|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import numpy as np
-
- import megengine
- import megengine.autodiff as ad
- import megengine.optimizer as optimizer
- from megengine import Parameter, tensor
- from megengine.jit import trace
- from megengine.module import Module
-
-
- class Simple(Module):
- def __init__(self):
- super().__init__()
- self.a = Parameter(1.23, dtype=np.float32)
-
- def forward(self, x):
- x = x * self.a
- return x
-
-
- def test_sgd_momentum():
- net = Simple()
-
- optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9)
- optim.clear_grad()
- gm = ad.GradManager().register(net.parameters())
-
- data = tensor([2.34])
-
- # do a step of train
- with gm.record():
- loss = net(data)
- gm.backward(loss)
- optim.step()
-
- np.testing.assert_almost_equal(optim._state[net.a]["momentum_buffer"].numpy(), 2.34)
-
- # do a step of infer
- loss = net(data)
- np.testing.assert_almost_equal(loss.numpy(), 2.34 * (1.23 - 2.34), 5)
-
- np.testing.assert_almost_equal(optim._state[net.a]["momentum_buffer"].numpy(), 2.34)
-
- # do a step of train
- optim.clear_grad()
- with gm.record():
- loss = net(data)
- gm.backward(loss)
- optim.step()
-
- np.testing.assert_almost_equal(loss.numpy(), 2.34 * (1.23 - 2.34), 5)
- np.testing.assert_almost_equal(
- optim._state[net.a]["momentum_buffer"].numpy(), 0.9 * 2.34 + 2.34
- )
-
-
- def test_sgd_momentum_trace():
-
- for symbolic in (True, False):
-
- @trace(symbolic=symbolic)
- def train_func(data, *, model=None, optim=None, gm=None):
- optim.clear_grad()
- with gm.record():
- loss = net(data)
- gm.backward(loss)
- optim.step()
- return loss
-
- @trace(symbolic=symbolic)
- def eval_func(data, *, model=None, optim=None, gm=None):
- loss = net(data)
- return loss
-
- net = Simple()
- optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9)
- gm = ad.GradManager().register(net.parameters())
- data = tensor([2.34])
- train_func(data, model=net, optim=optim, gm=gm)
- np.testing.assert_almost_equal(
- optim._state[net.a]["momentum_buffer"].numpy(), 2.34
- )
-
- # do 3 steps of infer
- for _ in range(3):
- loss = eval_func(data)
- np.testing.assert_almost_equal(loss.numpy(), 2.34 * (1.23 - 2.34), 5)
- np.testing.assert_almost_equal(
- optim._state[net.a]["momentum_buffer"].numpy(), 2.34
- )
-
- # do a step of train
- train_func(data, model=net, optim=optim, gm=gm)
- np.testing.assert_almost_equal(loss.numpy(), 2.34 * (1.23 - 2.34), 5)
- np.testing.assert_almost_equal(
- optim._state[net.a]["momentum_buffer"].numpy(), 0.9 * 2.34 + 2.34
- )
|