|
- /**
- * \file dnn/test/cuda/chanwise_convolution3d.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "megdnn/oprs/nn.h"
-
- #include "megcore_cuda.h"
- #include "test/common/checker.h"
- #include "test/common/convolution3d.h"
- #include "test/common/tensor.h"
- #include "test/common/workspace_wrapper.h"
- #include "test/cuda/fixture.h"
-
- #include <cuda_profiler_api.h>
- #include <cuda_runtime_api.h>
-
- using namespace megdnn;
- using namespace test;
-
- namespace {
-
- #if MEGDNN_WITH_BENCHMARK
- bool check_need_full_bench() {
- if (getenv("MEGDNN_CHANWISE_CONV3D_FULLBENCH"))
- return true;
- printf("set MEGDNN_CHANWISE_CONV3D_FULLBENCH to run full benchmark\n");
- return false;
- }
- #endif
- Convolution3D::Param gconv_param(Convolution3D::Param p) {
- p.sparse = Convolution3D::Param::Sparse::GROUP;
- return p;
- }
-
- template <int P0, int P1, int P2>
- class BenchmarkEnv {
- Handle *handle, *handle_cpu;
- std::unique_ptr<GaussianRNG> rng;
- TensorLayout lsrc, lflt0, lflt1, ldst;
- std::unique_ptr<Tensor<>> src0, src1, flt0, flt0_cpu, flt1, flt1_cpu, dst0,
- dst1;
- cudaEvent_t cuda_ev[3];
- cudaStream_t cuda_stream;
- size_t pad_d, pad_h, pad_w;
-
- template <typename T>
- static std::tuple<T, T, T> shuffle(std::tuple<T, T, T> data) {
- return std::make_tuple(std::get<P0>(data), std::get<P1>(data),
- std::get<P2>(data));
- }
-
- public:
- BenchmarkEnv(Handle* handle, Handle* handle_cpu) {
- this->handle = handle;
- this->handle_cpu = handle_cpu;
- rng = handle->create_operator<GaussianRNG>();
- // make cpu handle used
- handle_cpu->create_operator<Sleep>()->exec();
-
- for (int i = 0; i < 3; ++i)
- cudaEventCreate(&cuda_ev[i]);
- megcoreGetCUDAStream(handle->megcore_computing_handle(), &cuda_stream);
- }
-
- ~BenchmarkEnv() {
- for (int i = 0; i < 3; ++i)
- cudaEventDestroy(cuda_ev[i]);
- }
-
- void alloc(size_t N, size_t IC, size_t ID, size_t IH, size_t IW,
- size_t CHL_MUL, size_t FD, size_t FH, size_t FW, size_t PD,
- size_t PH, size_t PW) {
- pad_d = PD;
- pad_h = PH;
- pad_w = PW;
- auto mkly = [](const TensorShape& s) {
- return TensorLayout{s, dtype::Float32()};
- };
- lsrc = mkly({N, IC, ID, IH, IW});
- lflt0 = mkly({CHL_MUL * IC, IC, FD, FH, FW});
- lflt1 = mkly({IC, CHL_MUL, 1, FD, FH, FW});
- ldst = mkly({N, IC * CHL_MUL, ID - FD + 1 + PD * 2,
- IH - FH + 1 + PH * 2, IW - FW + 1 + PW * 2});
- src0.reset(new Tensor<>(handle, lsrc));
- src1.reset(new Tensor<>(handle, lsrc));
- flt0.reset(new Tensor<>(handle, lflt0));
- flt0_cpu.reset(new Tensor<>(handle_cpu, lflt0));
- flt1.reset(new Tensor<>(handle, lflt1));
- flt1_cpu.reset(new Tensor<>(handle_cpu, lflt1));
- dst0.reset(new Tensor<>(handle, ldst));
- dst1.reset(new Tensor<>(handle, ldst));
- }
-
- void fill_src() {
- rng->exec(src0->tensornd(), {});
- megdnn_memcpy_D2D(handle, src1->ptr(), src0->ptr(),
- lsrc.span().dist_byte());
- }
-
- void fill_flt() {
- rng->exec(flt1->tensornd(), {});
- megdnn_memcpy_D2H(handle, flt1_cpu->ptr(), flt1->ptr(),
- lflt1.span().dist_byte());
-
- const size_t IC = lflt1[0], CHL_MUL = lflt1[1],
- FSIZE = lflt1[3] * lflt1[4] * lflt1[5];
-
- // fill flt0 from flt1
- float* src = flt1_cpu->ptr();
- float* dst = flt0_cpu->ptr();
- memset(dst, 0, lflt0.span().dist_byte());
- for (size_t i = 0; i < IC; ++i) {
- for (size_t j = 0; j < CHL_MUL; ++j) {
- memcpy(dst + ((i * CHL_MUL + j) * IC + i) * FSIZE,
- src + (i * CHL_MUL + j) * FSIZE, FSIZE * sizeof(float));
- }
- }
- megdnn_memcpy_H2D(handle, flt0->ptr(), dst, lflt0.span().dist_byte());
- }
-
- void fill_dst() {
- rng->exec(dst0->tensornd(), {});
- megdnn_memcpy_D2D(handle, dst1->ptr(), dst0->ptr(),
- ldst.span().dist_byte());
- }
-
- template <class Opr>
- void exec(Opr* opr0, Opr* opr1) {
- opr0->param().pad_d = pad_d;
- opr0->param().pad_h = pad_h;
- opr0->param().pad_w = pad_w;
- opr1->param() = opr0->param();
- opr1->param().sparse = param::Convolution3D::Sparse::GROUP;
-
- TensorND a0, b0, c0, a1, b1, c1;
- std::tie(a0, b0, c0) = shuffle(std::make_tuple(
- src0->tensornd(), flt0->tensornd(), dst0->tensornd()));
- std::tie(a1, b1, c1) = shuffle(std::make_tuple(
- src1->tensornd(), flt1->tensornd(), dst1->tensornd()));
- WorkspaceWrapper wk(handle,
- std::max(opr0->get_workspace_in_bytes(
- a0.layout, b0.layout, c0.layout),
- opr1->get_workspace_in_bytes(
- a1.layout, b1.layout, c1.layout)));
- cudaProfilerStart();
- cudaEventRecord(cuda_ev[0], cuda_stream);
- opr0->exec(a0, b0, c0, wk.workspace());
- cudaEventRecord(cuda_ev[1], cuda_stream);
- opr1->exec(a1, b1, c1, wk.workspace());
- cudaEventRecord(cuda_ev[2], cuda_stream);
- cudaProfilerStop();
-
- if (getenv("MEGDNN_CHANWISE_CONV3D_VERBOSE") ||
- getenv("MEGDNN_CHANWISE_CONV3D_FULLBENCH")) {
- cudaStreamSynchronize(cuda_stream);
- float t0 = -1, t1 = -1;
- cudaEventElapsedTime(&t0, cuda_ev[0], cuda_ev[1]);
- cudaEventElapsedTime(&t1, cuda_ev[1], cuda_ev[2]);
- printf("%s;%s;%s: cudnn/megdnn: %.3fms/%.3fms=%.3f\n",
- lsrc.TensorShape::to_string().c_str(),
- lflt1.TensorShape::to_string().c_str(),
- ldst.TensorShape::to_string().c_str(), t0, t1, t0 / t1);
- }
- }
-
- void cmp_dst() {
- Tensor<> dst0_cpu(handle_cpu, ldst), dst1_cpu(handle_cpu, ldst);
- megdnn_memcpy_D2H(handle, dst0_cpu.ptr(), dst0->ptr(),
- ldst.span().dist_byte());
- megdnn_memcpy_D2H(handle, dst1_cpu.ptr(), dst1->ptr(),
- ldst.span().dist_byte());
- dst0_cpu.check_with(dst1_cpu);
- }
-
- void cmp_src() {
- Tensor<> src0_cpu(handle_cpu, lsrc), src1_cpu(handle_cpu, lsrc);
- megdnn_memcpy_D2H(handle, src0_cpu.ptr(), src0->ptr(),
- lsrc.span().dist_byte());
- megdnn_memcpy_D2H(handle, src1_cpu.ptr(), src1->ptr(),
- lsrc.span().dist_byte());
- src0_cpu.check_with(src1_cpu);
- }
-
- void cmp_flt() {
- Tensor<> flt0_cpu(handle_cpu, lflt0), flt1_cpu(handle_cpu, lflt1);
- float* p0 = flt0_cpu.ptr();
- float* p1 = flt1_cpu.ptr();
- megdnn_memcpy_D2H(handle, p0, flt0->ptr(), lflt0.span().dist_byte());
- megdnn_memcpy_D2H(handle, p1, flt1->ptr(), lflt1.span().dist_byte());
-
- size_t IC = lflt1[0], CHL_MUL = lflt1[1],
- FSIZE = lflt1[3] * lflt1[4] * lflt1[5];
-
- double tot_err = 0, tot_err_num = 0;
- for (size_t i = 0; i < IC; ++i) {
- for (size_t j = 0; j < CHL_MUL; ++j) {
- auto t0 = p0 + ((i * CHL_MUL + j) * IC + i) * FSIZE,
- t1 = p1 + (i * CHL_MUL + j) * FSIZE;
- for (size_t k = 0; k < FSIZE; ++k) {
- auto err = std::abs(diff(t0[k], t1[k]));
- tot_err += err;
- tot_err_num += 1;
- ASSERT_LT(err, 1e-2)
- << "failed at " << i << " " << j << " " << k
- << " vals=" << t0[k] << "," << t1[k];
- }
- }
- }
- auto avg_err = tot_err / tot_err_num;
- ASSERT_LT(avg_err, 1e-4);
- }
- };
-
- } // anonymous namespace
-
- constexpr auto M = Convolution3D::Mode::CROSS_CORRELATION;
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION3D_FORWARD) {
- constexpr auto M = Convolution3D::Mode::CROSS_CORRELATION;
- Checker<Convolution3D> checker(handle_cuda());
- bool require_algo = false;
- checker.set_before_exec_callback(
- AlgoChecker<Convolution3DForward>(
- "CHANNEL_WISE", &require_algo));
- checker.set_param(gconv_param({M, 0, 0, 0, 1, 1, 1}))
- .execs({{1, 1, 2, 2, 2}, {1, 1, 1, 2, 2, 2}, {}})
- .execs({{1, 1, 5, 5, 5}, {1, 1, 1, 2, 2, 2}, {}});
- checker.set_param(gconv_param({M, 0, 0, 0, 1, 1, 1}))
- .execs({{1, 2, 2, 2, 2}, {2, 1, 1, 2, 2, 2}, {}})
- .execs({{1, 2, 5, 5, 5}, {2, 1, 1, 2, 2, 2}, {}})
- .execs({{2, 2, 5, 5, 5}, {2, 3, 1, 2, 2, 2}, {2, 6, 4, 4, 4}});
-
- checker.set_param(gconv_param({M, 1, 1, 1, 1, 1, 1}))
- .execs({{2, 2, 5, 5, 5}, {2, 1, 1, 2, 2, 2}, {}});
-
- checker.set_param(gconv_param({M, 2, 3, 3, 2, 1, 1}))
- .execs({{4, 12, 10, 5, 10}, {12, 2, 1, 4, 5, 5}, {}});
-
- // padding larger than kern
- checker.set_param(gconv_param({M, 10, 15, 15, 4, 5, 5}))
- .execs({{4, 12, 10, 5, 10}, {12, 2, 1, 4, 5, 5}, {}});
-
- for (uint32_t n : {8, 12})
- for (uint32_t id : {12})
- for (uint32_t ih : {12})
- for (uint32_t iw : {16})
- for (uint32_t ic : {4})
- for (uint32_t oc : {4})
- for (uint32_t fd : {2, 5})
- for (uint32_t pd : {2})
- for (uint32_t sd : {1})
- for (uint32_t dd : {1}) {
- checker
- .set_param(gconv_param(
- {M, pd, pd, pd, sd,
- sd, sd, dd, dd,
- dd}))
- .execs({{n, ic, id, ih, iw},
- {ic, oc, 1, fd, fd,
- fd},
- {}});
- }
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION3D_BACKWARD_DATA) {
- Checker<Convolution3DBackwardData> checker(handle_cuda());
- bool require_algo = false;
- checker.set_before_exec_callback(
- AlgoChecker<Convolution3DBackwardData>(
- "CHANNEL_WISE", &require_algo));
-
- checker.set_param(gconv_param({M, 0, 0, 0, 1, 1, 1}))
- .execs({{1, 1, 1, 2, 2, 2}, {1, 1, 1, 1, 1}, {1, 1, 2, 2, 2}})
- .execs({{1, 1, 1, 2, 2, 2}, {1, 1, 5, 5, 5}, {1, 1, 6, 6, 6}});
-
- require_algo = true;
- checker.execs({{2, 1, 1, 2, 2, 2}, {1, 2, 1, 1, 1}, {1, 2, 2, 2, 2}})
- .execs({{2, 1, 1, 2, 2, 2}, {1, 2, 5, 5, 5}, {1, 2, 6, 6, 6}})
- .execs({{2, 3, 1, 2, 2, 2}, {2, 6, 5, 5, 5}, {2, 2, 6, 6, 6}});
-
- checker.set_param(gconv_param({M, 1, 1, 1, 1, 1, 1}))
- .execs({{2, 1, 1, 2, 2, 2}, {2, 2, 5, 5, 5}, {2, 2, 4, 4, 4}});
-
- checker.set_param(gconv_param({M, 2, 3, 3, 2, 1, 1}))
- .execs({{12, 2, 1, 4, 5, 5},
- {32, 24, 20, 10, 10},
- {32, 12, 39, 8, 8}});
-
- // padding larger than kern
- checker.set_param(gconv_param({M, 20, 30, 20, 4, 5, 4}))
- .execs({{6, 2, 1, 4, 5, 4},
- {32, 12, 10, 12, 10},
- {32, 6, 2, 3, 2}});
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION3D_BACKWARD_FILTER) {
- Checker<Convolution3DBackwardFilter> checker(handle_cuda());
- bool require_algo = false;
- checker.set_before_exec_callback(
- AlgoChecker<Convolution3DBackwardFilter>(
- "CHANNEL_WISE", &require_algo));
-
- checker.set_param(gconv_param({M, 0, 0, 0, 1, 1, 1}))
- .execs({{1, 1, 2, 2, 2}, {1, 1, 1, 1, 1}, {1, 1, 1, 2, 2, 2}})
- .execs({{1, 1, 6, 6, 6}, {1, 1, 5, 5, 5}, {1, 1, 1, 2, 2, 2}})
- .execs({{256, 1, 2, 2, 2}, {256, 1, 1, 1, 1}, {1, 1, 1, 2, 2, 2}});
- require_algo = true;
- checker.execs({{1, 2, 2, 2, 2}, {1, 2, 1, 1, 1}, {2, 1, 1, 2, 2, 2}})
- .execs({{1, 2, 6, 6, 6}, {1, 2, 5, 5, 5}, {2, 1, 1, 2, 2, 2}})
- .execs({{2, 2, 6, 6, 6}, {2, 6, 5, 5, 5}, {2, 3, 1, 2, 2, 2}});
-
- checker.set_param(gconv_param({M, 1, 1, 1, 1, 1, 1}))
- .execs({{2, 2, 4, 4, 4}, {2, 2, 5, 5, 5}, {2, 1, 1, 2, 2, 2}});
-
- require_algo = false;
- checker.set_param(gconv_param({M, 0, 0, 0, 1, 1, 1}))
- .execs({{40960, 1, 1, 1, 1},
- {40960, 1, 1, 1, 1},
- {1, 1, 1, 1, 1, 1}});
- require_algo = true;
-
- checker.set_param(gconv_param({M, 2, 3, 2, 2, 1, 2}))
- .execs({{32, 12, 39, 8, 20},
- {32, 36, 20, 10, 10},
- {12, 3, 1, 4, 5, 6}});
-
- // padding larger than kern
- checker.set_param(gconv_param({M, 20, 30, 30, 4, 5, 5}))
- .execs({{32, 6, 2, 3, 3},
- {32, 12, 10, 12, 12},
- {6, 2, 1, 4, 5, 5}});
-
- // unused filter items
- checker.set_param(gconv_param({M, 2, 3, 3, 2, 3, 3}))
- .execs({{32, 6, 1, 1, 1}, {32, 12, 1, 1, 1}, {6, 2, 1, 5, 7, 7}});
- }
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(CUDA, CHANWISE_CONVOLUTION3D_FORWARD_BENCH_CHECK) {
- auto handle = handle_cuda();
- auto handle_cpu = handle_naive();
- auto conv0 = handle->create_operator<Convolution3DForward>();
- auto conv1 = handle->create_operator<Convolution3DForward>();
- BenchmarkEnv<0, 1, 2> benv(handle, handle_cpu);
-
- auto run = [&](size_t N, size_t IC, size_t ID, size_t IH, size_t IW,
- size_t CHL_MUL, size_t FD, size_t FH, size_t FW, size_t PD,
- size_t PH, size_t PW) {
- benv.alloc(N, IC, ID, IH, IW, CHL_MUL, FD, FH, FW, PD, PH, PW);
- benv.fill_src();
- benv.fill_flt();
- benv.exec(conv0.get(), conv1.get());
- benv.cmp_dst();
- };
-
- run(64, 30, 10, 10, 10, 1, 3, 3, 3, 1, 1, 1);
- if (check_need_full_bench()) {
- run(64, 728, 9, 9, 9, 2, 5, 5, 5, 2, 2, 2);
- run(64, 64, 30, 30, 30, 2, 3, 3, 3, 1, 1, 1);
- run(1, 2048, 4, 4, 4, 2, 3, 3, 3, 1, 1, 1);
- }
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION3D_BWD_DATA_BENCH_CHECK) {
- auto handle = handle_cuda();
- auto handle_cpu = handle_naive();
- auto conv0 = handle->create_operator<Convolution3DBackwardData>();
- auto conv1 = handle->create_operator<Convolution3DBackwardData>();
- BenchmarkEnv<1, 2, 0> benv(handle, handle_cpu);
-
- auto run = [&](size_t N, size_t IC, size_t ID, size_t IH, size_t IW,
- size_t CHL_MUL, size_t FD, size_t FH, size_t FW, size_t PD,
- size_t PH, size_t PW) {
- benv.alloc(N, ID, IC, IH, IW, CHL_MUL, FD, FH, FW, PD, PH, PW);
- benv.fill_dst();
- benv.fill_flt();
- benv.exec(conv0.get(), conv1.get());
- benv.cmp_src();
- };
-
- run(64, 60, 50, 50, 50, 1, 3, 3, 3, 1, 1, 1);
- if (check_need_full_bench()) {
- run(64, 728, 18, 18, 18, 2, 5, 5, 5, 2, 2, 2);
- run(64, 64, 32, 32, 32, 2, 3, 3, 3, 1, 1, 1);
- run(1, 2048, 4, 4, 4, 2, 3, 3, 3, 1, 1, 1);
- }
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION3D_BWD_FILTER_BENCH_CHECK) {
- auto handle = handle_cuda();
- auto handle_cpu = handle_naive();
- auto conv0 = handle->create_operator<Convolution3DBackwardFilter>();
- auto conv1 = handle->create_operator<Convolution3DBackwardFilter>();
- BenchmarkEnv<0, 2, 1> benv(handle, handle_cpu);
-
- auto run = [&](size_t N, size_t IC, size_t ID, size_t IH, size_t IW,
- size_t CHL_MUL, size_t FD, size_t FH, size_t FW, size_t PD,
- size_t PH, size_t PW) {
- benv.alloc(N, IC, ID, IH, IW, CHL_MUL, FD, FH, FW, PD, PH, PW);
- benv.fill_src();
- benv.fill_dst();
- benv.exec(conv0.get(), conv1.get());
- benv.cmp_flt();
- };
- run(67, 729, 20, 20, 20, 1, 3, 3, 3, 1, 1, 1);
- if (check_need_full_bench()) {
- run(64, 728, 18, 18, 18, 2, 5, 5, 5, 2, 2, 2);
- // the case below is an sample that select unexpected algo_1
- run(64, 64, 32, 32, 32, 2, 3, 3, 3, 1, 1, 1);
- run(1, 2048, 4, 4, 4, 2, 3, 3, 3, 1, 1, 1);
- }
- }
- #endif
-
- // vim: syntax=cpp.doxygen
|