|
- /**
- * \file dnn/test/cuda/group_conv.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
- #include "megdnn/oprs/nn.h"
-
- #include "test/cuda/fixture.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/convolution.h"
-
- #include "src/cuda/utils.h"
-
- namespace megdnn {
- namespace test {
-
-
- TEST_F(CUDA, GROUP_CONV_FORWARD)
- {
- bool is_int_available = cuda::is_compute_capability_required(6, 1);
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW,
- size_t FH, size_t FW,
- size_t OC, size_t /* OH */, size_t /* OW */,
- size_t PH, size_t PW,
- size_t SH, size_t SW,
- size_t DH, size_t DW,
- size_t group)
- {
- {
- // float case
- Checker<Convolution> checker(handle_cuda());
- Convolution::Param param;
- param.sparse = Convolution::Param::Sparse::GROUP;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_h = SH;
- param.stride_w = SW;
- param.dilate_h = DH;
- param.dilate_w = DW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec({{N, IC, IH, IW},
- {group, OCg, ICg, FH, FW}, {}});
- }
- if (is_int_available) {
- // int 8x8x32 case
- Checker<Convolution> checker(handle_cuda());
- Convolution::Param param;
- param.sparse = Convolution::Param::Sparse::GROUP;
- param.format = Convolution::Param::Format::NHWC;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_h = SH;
- param.stride_w = SW;
- param.dilate_h = DH;
- param.dilate_w = DW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- UniformIntRNG rng(-4, 4);
- checker.set_param(param).
- set_dtype(0, dtype::Int8()).
- set_dtype(1, dtype::Int8()).
- set_dtype(2, dtype::Int32()).
- set_rng(0, &rng).
- set_rng(1, &rng).
- exec({{N, IH, IW, IC}, {group, OCg, FH, FW, ICg}, {}});
- }
- };
- // normal case
- run(2, 64, 7, 7,
- 3, 3,
- 32, 5, 5,
- 0, 0,
- 1, 1,
- 1, 1,
- 2);
- // padded case
- run(2, 32, 7, 7,
- 3, 3,
- 64, 7, 7,
- 1, 1,
- 1, 1,
- 1, 1,
- 4);
- // strided case
- run(2, 32, 7, 7,
- 3, 3,
- 64, 3, 3,
- 0, 0,
- 2, 2,
- 1, 1,
- 8);
- // dilated case
- run(2, 32, 7, 7,
- 3, 3,
- 64, 3, 3,
- 0, 0,
- 1, 1,
- 2, 2,
- 8);
-
- }
-
- TEST_F(CUDA, GROUP_CONV_FORWARD_1x1) {
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t FH,
- size_t FW, size_t OC, size_t group) {
- Checker<Convolution> checker(handle_cuda());
- std::string conv1x1_name =
- ConvBiasForward::algo_name<ConvBias::MatmulParam>(
- "INPLACE_MATMUL", {});
- checker.set_before_exec_callback(AlgoChecker<ConvolutionForward>(
- ExecutionPolicyAlgoName{"DEFAULT",
- {{ConvBiasForward::algo_name<
- ConvBiasForward::DirectParam>(
- "CUDA:GROUP_CONV", {})
- .c_str(),
- {{conv1x1_name.c_str(), {}}}}}}));
-
- Convolution::Param param;
- param.sparse = Convolution::Param::Sparse::GROUP;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec(
- {{N, IC, IH, IW}, {group, OCg, ICg, FH, FW}, {}});
- };
- size_t ic = 192;
- for (size_t g = 2; g <= 3; g += 1) {
- for (size_t ih = 8; ih <= 128; ih *= 4) {
- size_t iw = ih;
- run(2, ic, ih, iw, 1, 1, ic / g, g);
- run(2, ic, ih + 1, iw + 1, 1, 1, ic / g, g);
- }
- }
- }
-
- TEST_F(CUDA, GROUP_CONV_BACKWARD_DATA)
- {
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW,
- size_t FH, size_t FW,
- size_t OC, size_t OH, size_t OW,
- size_t PH, size_t PW,
- size_t SH, size_t SW,
- size_t group)
- {
- Checker<ConvolutionBackwardData> checker(handle_cuda());
- ConvolutionBackwardData::Param param;
- param.sparse = Convolution::Param::Sparse::GROUP;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_h = SH;
- param.stride_w = SW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec({{group, OCg, ICg, FH, FW},
- {N, OC, OH, OW}, {N, IC, IH, IW}});
- };
- // normal case
- run(2, 64, 7, 7,
- 3, 3,
- 32, 5, 5,
- 0, 0,
- 1, 1,
- 2);
- // padded case
- run(2, 32, 7, 7,
- 3, 3,
- 64, 7, 7,
- 1, 1,
- 1, 1,
- 4);
- // strided case
- run(2, 32, 7, 7,
- 3, 3,
- 64, 3, 3,
- 0, 0,
- 2, 2,
- 8);
- }
-
- TEST_F(CUDA, GROUP_CONV_BACKWARD_DATA_CUDNN)
- {
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW,
- size_t FH, size_t FW,
- size_t OC, size_t OH, size_t OW,
- size_t PH, size_t PW,
- size_t SH, size_t SW,
- size_t group)
- {
- Checker<ConvolutionBackwardData> checker(handle_cuda());
- checker.set_before_exec_callback(
- AlgoChecker<ConvolutionBackwardData>(ExecutionPolicyAlgoName{
- "CUDA:GROUP_CONV_BACKWARD_DATA", {{"CUDNN", {}}}}));
-
- ConvolutionBackwardData::Param param;
- param.sparse = Convolution::Param::Sparse::GROUP;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_h = SH;
- param.stride_w = SW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec({{group, OCg, ICg, FH, FW},
- {N, OC, OH, OW}, {N, IC, IH, IW}});
- };
- // normal case
- run(2, 64, 7, 7,
- 3, 3,
- 32, 5, 5,
- 0, 0,
- 1, 1,
- 2);
- // padded case
- run(2, 32, 7, 7,
- 3, 3,
- 64, 7, 7,
- 1, 1,
- 1, 1,
- 4);
- // strided case
- run(2, 32, 7, 7,
- 3, 3,
- 64, 3, 3,
- 0, 0,
- 2, 2,
- 8);
- }
-
- TEST_F(CUDA, GROUP_CONV_BACKWARD_FILTER)
- {
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW,
- size_t FH, size_t FW,
- size_t OC, size_t OH, size_t OW,
- size_t PH, size_t PW,
- size_t SH, size_t SW,
- size_t group)
- {
- Checker<ConvolutionBackwardFilter> checker(handle_cuda());
- ConvolutionBackwardFilter::Param param;
- param.sparse = Convolution::Param::Sparse::GROUP;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_h = SH;
- param.stride_w = SW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec({{N, IC, IH, IW},
- {N, OC, OH, OW}, {group, OCg, ICg, FH, FW}});
- };
- // normal case
- run(2, 64, 7, 7,
- 3, 3,
- 32, 5, 5,
- 0, 0,
- 1, 1,
- 2);
- // padded case
- run(2, 32, 7, 7,
- 3, 3,
- 64, 7, 7,
- 1, 1,
- 1, 1,
- 4);
- // strided case
- run(2, 32, 7, 7,
- 3, 3,
- 64, 3, 3,
- 0, 0,
- 2, 2,
- 8);
- }
-
- TEST_F(CUDA, GROUP_CONV_BACKWARD_FILTER_CUDNN)
- {
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW,
- size_t FH, size_t FW,
- size_t OC, size_t OH, size_t OW,
- size_t PH, size_t PW,
- size_t SH, size_t SW,
- size_t group)
- {
- Checker<ConvolutionBackwardFilter> checker(handle_cuda());
- checker.set_before_exec_callback(
- AlgoChecker<ConvolutionBackwardFilter>(ExecutionPolicyAlgoName{
- "CUDA:GROUP_CONV_BACKWARD_FILTER", {{"CUDNN", {}}}}));
- ConvolutionBackwardFilter::Param param;
- param.sparse = Convolution::Param::Sparse::GROUP;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_h = SH;
- param.stride_w = SW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec({{N, IC, IH, IW},
- {N, OC, OH, OW}, {group, OCg, ICg, FH, FW}});
- };
- // normal case
- run(2, 64, 7, 7,
- 3, 3,
- 32, 5, 5,
- 0, 0,
- 1, 1,
- 2);
- // padded case
- run(2, 32, 7, 7,
- 3, 3,
- 64, 7, 7,
- 1, 1,
- 1, 1,
- 4);
- // strided case
- run(2, 32, 7, 7,
- 3, 3,
- 64, 3, 3,
- 0, 0,
- 2, 2,
- 8);
- }
- } // namespace test
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|