|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- from typing import Iterable, Union
-
- import numpy as np
-
- from ..functional import sqrt
- from ..tensor_nn import Buffer, Parameter
- from .distributed_optimizer import DistributedOptimizer
-
-
- class Adadelta(DistributedOptimizer):
- r"""Implements Adadelta algorithm.
-
- It has been proposed in `"ADADELTA: An Adaptive Learning Rate Method" <https://arxiv.org/abs/1212.5701>`_.
-
- :param params: iterable of parameters to optimize or dicts defining
- parameter groups.
- :param lr: coefficient that scale delta before it is applied
- to the parameters (default: 1.0).
- :param rho: coefficient used for computing a running average
- of squared gradients (default: 0.9).
- :param eps: term added to the denominator to improve
- numerical stability (default: 1e-6).
- :param weight_decay: weight decay (L2 penalty) (default: 0).
- """
-
- def __init__(
- self,
- params: Union[Iterable[Parameter], dict],
- lr: float = 1.0,
- rho: float = 0.9,
- eps: float = 1e-6,
- weight_decay: float = 0.0,
- **kwargs
- ):
- assert lr >= 0.0, "Invalid learning rate: {}".format(lr)
- assert rho >= 0.0 and rho <= 1.0, "Invalid rho value: {}".format(rho)
- assert eps >= 0.0, "Invalid epsilon value: {}".format(eps)
- assert weight_decay >= 0.0, "Invalid weight_decay value: {}".format(
- weight_decay
- )
-
- defaults = dict(lr=lr, rho=rho, eps=eps, weight_decay=weight_decay)
- super().__init__(params, defaults, **kwargs)
-
- def _create_state(self, param_group):
- for param in param_group["params"]:
- self._add_state(param, "square_avg")
- self._add_state(param, "acc_delta")
- self._add_state(param, "step", initializer=0.0)
-
- def _updates(self, param_group):
- lr = param_group["lr"]
- weight_decay = param_group["weight_decay"]
- rho = param_group["rho"]
- eps = param_group["eps"]
-
- for param in param_group["params"]:
-
- if param.__wrapped__ in self._grad_skip:
- self._grad_skip.remove(param.__wrapped__)
- continue
-
- if not isinstance(param.grad, Buffer):
- raise TypeError(
- "grad must be a Buffer, maybe you forget to call backward()?"
- )
-
- if not param.requires_grad:
- continue
-
- states = self._state[param]
- step = states["step"]
- step += 1.0
- grad = param.grad
- if weight_decay != 0.0:
- grad += param * weight_decay
-
- square_avg = states["square_avg"]
- acc_delta = states["acc_delta"]
- square_avg = rho * square_avg + (1 - rho) * grad ** 2
- std = sqrt(square_avg + eps)
- delta = sqrt(acc_delta + eps) / std * grad
- param -= lr * delta
- acc_delta = rho * acc_delta + (1 - rho) * delta ** 2
- states["square_avg"]._reset(square_avg)
- states["acc_delta"]._reset(acc_delta)
-
- assert len(self._grad_skip) == 0
|