|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- from functools import partial
-
- import numpy as np
-
- import megengine.functional as F
- from megengine import tensor
- from megengine.test import assertTensorClose
-
-
- def _default_compare_fn(x, y):
- assertTensorClose(x.numpy(), y)
-
-
- def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs):
- """
- func: the function to run opr.
- compare_fn: the function to compare the result and expected, use assertTensorClose if None.
- ref_fn: the function to generate expected data, should assign output if None.
- cases: the list which have dict element, the list length should be 2 for dynamic shape test.
- and the dict should have input,
- and should have output if ref_fn is None.
- should use list for multiple inputs and outputs for each case.
- kwargs: The additional kwargs for opr func.
-
- simple examples:
-
- dtype = np.float32
- cases = [{"input": [10, 20]}, {"input": [20, 30]}]
- opr_test(cases,
- F.eye,
- ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
- dtype=dtype)
-
- """
-
- def check_results(results, expected):
- if not isinstance(results, tuple):
- results = (results,)
- for r, e in zip(results, expected):
- compare_fn(r, e)
-
- def get_param(cases, idx):
- case = cases[idx]
- inp = case.get("input", None)
- outp = case.get("output", None)
- if inp is None:
- raise ValueError("the test case should have input")
- if not isinstance(inp, list):
- inp = (inp,)
- else:
- inp = tuple(inp)
- if ref_fn is not None and callable(ref_fn):
- outp = ref_fn(*inp)
- if outp is None:
- raise ValueError("the test case should have output or reference function")
- if not isinstance(outp, list):
- outp = (outp,)
- else:
- outp = tuple(outp)
-
- return inp, outp
-
- if len(cases) == 0:
- raise ValueError("should give one case at least")
-
- if not callable(func):
- raise ValueError("the input func should be callable")
-
- inp, outp = get_param(cases, 0)
- inp_tensor = [tensor(inpi) for inpi in inp]
-
- results = func(*inp_tensor, **kwargs)
- check_results(results, outp)
-
-
- def common_test_reduce(opr, ref_opr):
- data1_shape = (5, 6, 7)
- data2_shape = (2, 9, 12)
- data1 = np.random.random(data1_shape).astype(np.float32)
- data2 = np.random.random(data2_shape).astype(np.float32)
- cases = [{"input": data1}, {"input": data2}]
-
- if opr not in (F.argmin, F.argmax):
- # test default axis
- opr_test(cases, opr, ref_fn=ref_opr)
- # test all axises in range of input shape
- for axis in range(-3, 3):
- # test keepdims False
- opr_test(cases, opr, ref_fn=lambda x: ref_opr(x, axis=axis), axis=axis)
- # test keepdims True
- opr_test(
- cases,
- opr,
- ref_fn=lambda x: ref_opr(x, axis=axis, keepdims=True),
- axis=axis,
- keepdims=True,
- )
- else:
- # test defaut axis
- opr_test(cases, opr, ref_fn=lambda x: ref_opr(x).astype(np.int32))
- # test all axises in range of input shape
- for axis in range(0, 3):
- opr_test(
- cases,
- opr,
- ref_fn=lambda x: ref_opr(x, axis=axis).astype(np.int32),
- axis=axis,
- )
-
-
- def test_sum():
- common_test_reduce(opr=F.sum, ref_opr=np.sum)
-
-
- def test_prod():
- common_test_reduce(opr=F.prod, ref_opr=np.prod)
-
-
- def test_mean():
- common_test_reduce(opr=F.mean, ref_opr=np.mean)
-
-
- def test_var():
- common_test_reduce(opr=F.var, ref_opr=np.var)
-
-
- def test_std():
- common_test_reduce(opr=F.std, ref_opr=np.std)
-
-
- def test_min():
- common_test_reduce(opr=F.min, ref_opr=np.min)
-
-
- def test_max():
- common_test_reduce(opr=F.max, ref_opr=np.max)
-
-
- def test_argmin():
- common_test_reduce(opr=F.argmin, ref_opr=np.argmin)
-
-
- def test_argmax():
- common_test_reduce(opr=F.argmax, ref_opr=np.argmax)
-
-
- def test_sqrt():
- d1_shape = (15,)
- d2_shape = (25,)
- d1 = np.random.random(d1_shape).astype(np.float32)
- d2 = np.random.random(d2_shape).astype(np.float32)
-
- cases = [{"input": d1}, {"input": d2}]
- opr_test(cases, F.sqrt, ref_fn=np.sqrt)
-
-
- def test_sort():
- data1_shape = (10, 3)
- data2_shape = (12, 2)
- data1 = np.random.random(data1_shape).astype(np.float32)
- data2 = np.random.random(data2_shape).astype(np.float32)
- output0 = [np.sort(data1), np.argsort(data1).astype(np.int32)]
- output1 = [np.sort(data2), np.argsort(data2).astype(np.int32)]
-
- cases = [
- {"input": data1, "output": output0},
- {"input": data2, "output": output1},
- ]
- opr_test(cases, F.sort)
-
-
- def test_normalize():
-
- cases = [
- {"input": np.random.random((2, 3, 12, 12)).astype(np.float32)} for i in range(2)
- ]
-
- def np_normalize(x, p=2, axis=None, eps=1e-12):
- if axis is None:
- norm = np.sum(x ** p) ** (1.0 / p)
- else:
- norm = np.sum(x ** p, axis=axis, keepdims=True) ** (1.0 / p)
- return x / np.clip(norm, a_min=eps, a_max=np.inf)
-
- # Test L-2 norm along all dimensions
- opr_test(cases, F.normalize, ref_fn=np_normalize)
-
- # Test L-1 norm along all dimensions
- opr_test(cases, partial(F.normalize, p=1), ref_fn=partial(np_normalize, p=1))
-
- # Test L-2 norm along the second dimension
- opr_test(cases, partial(F.normalize, axis=1), ref_fn=partial(np_normalize, axis=1))
-
- # Test some norm == 0
- cases[0]["input"][0, 0, 0, :] = 0
- cases[1]["input"][0, 0, 0, :] = 0
- opr_test(cases, partial(F.normalize, axis=3), ref_fn=partial(np_normalize, axis=3))
|