|
- /**
- * \file dnn/src/x86/conv_bias/opr_impl.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
-
- #include "src/x86/conv_bias/opr_impl.h"
- #include <algorithm>
- #include <memory>
- #include "src/common/metahelper.h"
- #include "src/common/opr_delegate.h"
- #include "src/x86/conv_bias/f32/algos.h"
- #include "src/x86/conv_bias/int8/algo_usable_preferred.h"
- #include "src/x86/conv_bias/int8/algos.h"
- #include "src/x86/matrix_mul/opr_impl.h"
-
- using namespace megdnn;
- using namespace x86;
- namespace {
-
- bool is_fallback_or_naive(const detail::Algorithm* algo) {
- return algo->handle_type() == Handle::HandleType::NAIVE ||
- algo->handle_type() == Handle::HandleType::FALLBACK;
- }
-
- } // anonymous namespace
-
- class ConvBiasImpl::AlgoPack : NonCopyableObj {
- AlgoDirect stride1_direct;
- AlgoDirectStride2 stride2_direct;
- AlgoDirectAvx2Stride1Int8 avx2_stride1_direct_int8;
- AlgoAVX2DirectConvStride2 avx2_stride2_direct;
- AlgoChanWiseAvx2Stride1Qint8 avx2_stride1_chanwsie_qint8;
- AlgoChanWiseAvx2Stride2Qint8 avx2_stride2_chanwsie_qint8;
- #if MEGDNN_X86_WITH_MKL_DNN
- AlgoMkldnnMatmulQint8 mkldnn_matmul_qint8;
- //! Because the mkldnnconv need handle
- AlgoMkldnnQint8 mkldnn_qint8;
- AlgoMkldnnConv mkldnn_conv_fp32;
- #endif
- SmallVector<std::unique_ptr<AlgoBase>> refhold;
- SmallVector<fallback::ConvBiasImpl::AlgoBase*> m_all_no_winograd_algo;
- SmallVector<fallback::ConvBiasImpl::AlgoBase*> m_winograd_algos;
- fallback::ConvBiasImpl::AlgoBase::Mapper m_all_algos_map;
-
- public:
- AlgoPack() {
- //! FIXME: preference to use mkldnn algo on VNNI devices
- //! But now mkldnn algo preference issue with NCHW->NHWC->NCHW
- #if MEGDNN_X86_WITH_MKL_DNN
- //! Create the mkldnn algo
- m_all_no_winograd_algo.emplace_back(&mkldnn_conv_fp32);
- m_all_no_winograd_algo.emplace_back(&mkldnn_matmul_qint8);
- m_all_no_winograd_algo.emplace_back(&mkldnn_qint8);
- #endif
- m_all_no_winograd_algo.emplace_back(&stride1_direct);
- m_all_no_winograd_algo.emplace_back(&stride2_direct);
- m_all_no_winograd_algo.emplace_back(&avx2_stride1_chanwsie_qint8);
- m_all_no_winograd_algo.emplace_back(&avx2_stride2_chanwsie_qint8);
- m_all_no_winograd_algo.emplace_back(&avx2_stride1_direct_int8);
- m_all_no_winograd_algo.emplace_back(&avx2_stride2_direct);
-
- static CpuOprDelegationStorage<> storage;
- auto matmul_opr = storage.get<MatrixMul>();
- auto&& matmul_algos =
- static_cast<MatrixMulImpl*>(matmul_opr)->get_all_packed_algo();
- for (auto&& algo : matmul_algos) {
- if (is_fallback_or_naive(algo))
- continue;
- for (uint32_t tile_size : {8, 16, 24}) {
- refhold.emplace_back(new AlgoFP32WinogradF63_8x8(
- static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
- tile_size));
- m_winograd_algos.emplace_back(refhold.back().get());
- refhold.emplace_back(new AlgoFP32WinogradF23_8x8(
- static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
- tile_size));
- m_winograd_algos.emplace_back(refhold.back().get());
- }
- }
-
- for (auto&& algo : m_all_no_winograd_algo) {
- m_all_algos_map.emplace(algo->info().desc, algo);
- }
- for (auto&& algo : m_winograd_algos) {
- m_all_algos_map.emplace(algo->info().desc, algo);
- }
- }
- const SmallVector<fallback::ConvBiasImpl::AlgoBase*>& all_no_winograd_algo()
- const {
- return m_all_no_winograd_algo;
- }
- const SmallVector<fallback::ConvBiasImpl::AlgoBase*>& winograd_algos()
- const {
- return m_winograd_algos;
- }
- const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; }
- };
-
- const ConvBiasImpl::AlgoPack& ConvBiasImpl::algo_pack() {
- static AlgoPack algo_pack;
- return algo_pack;
- }
-
- fallback::ConvBiasImpl::AlgoBase* ConvBiasImpl::get_algo_from_desc(
- const AlgorithmDesc& desc) {
- megdnn_assert(algo_pack().all_algos_map().find(desc) !=
- algo_pack().all_algos_map().end());
- return algo_pack().all_algos_map().at(desc);
- }
-
- SmallVector<fallback::ConvBiasImpl::AlgoBase*>
- ConvBiasImpl::get_all_packed_algo() {
- auto&& algos = fallback::ConvBiasImpl::get_all_packed_algo();
- algos.insert(algos.begin(), algo_pack().all_no_winograd_algo().begin(),
- algo_pack().all_no_winograd_algo().end());
- algos.insert(algos.end(), algo_pack().winograd_algos().begin(),
- algo_pack().winograd_algos().end());
-
- return std::move(algos);
- }
-
- void ConvBiasImpl::get_rectified_img_size(size_t IH, size_t IW, size_t FH,
- size_t FW, size_t OH, size_t OW,
- size_t PH, size_t PW, size_t& IH2,
- size_t& IW2, size_t& OH2,
- size_t& OW2) {
- OW2 = (OW + 7) >> 3 << 3;
- OH2 = OH;
- IH2 = std::max(IH, OH2 + FH - 1 + 2 * PH);
- IW2 = std::max(IW, OW2 + FW - 1 + 2 * PW);
- }
-
- const char* ConvBiasImpl::get_algorithm_set_name() const {
- // x86 version 0
- return "X0";
- }
-
- bool ConvBiasImpl::is_matmul_quantized_prefer(
- const ConvBiasImpl::NCBKernSizeParam& param) const {
- bool conv_direct_chanwise_mkldnn_usable = true;
- if (param.dst_type.enumv() == DTypeEnum::QuantizedS8 ||
- param.dst_type.enumv() == DTypeEnum::QuantizedS32) {
- conv_direct_chanwise_mkldnn_usable =
- chanwise_avx2_stride1_qint8_usable_preferred(param) ||
- chanwise_avx2_stride2_qint8_usable_preferred(param) ||
- direct_avx2_stride1_int8_usable_preferred(param) ||
- direct_avx2_stride2_int8_usable_preferred(param);
- #if MEGDNN_X86_WITH_MKL_DNN
- conv_direct_chanwise_mkldnn_usable =
- conv_direct_chanwise_mkldnn_usable ||
- mkldnn_qint8_usable_preferred(param) ||
- mkldnn_matmul_qint8_usable_preferred(param);
- #endif
- }
-
- return !conv_direct_chanwise_mkldnn_usable ||
- (is_supported(SIMDType::VNNI) &&
- !chanwise_avx2_stride1_qint8_usable_preferred(param) &&
- !chanwise_avx2_stride2_qint8_usable_preferred(param));
- }
-
- SmallVector<AlgoCategory> ConvBiasImpl::suggest_algo_category_order(
- const NCBKernSizeParam& param) const {
- auto IC = param.filter_meta.icpg;
- auto OC = param.filter_meta.ocpg;
- auto FH = param.filter_meta.spatial[0];
- auto FW = param.filter_meta.spatial[1];
- //! TODO: now winograd only support fast-run
- //! nchw88 use mkl-dnn which algo is direct
- if (param.filter_meta.format == param::ConvBias::Format::NCHW88) {
- return {AlgoCategory::DIRECT, AlgoCategory::IM2COL};
- }
- //! im2col + matmul
- bool im2col_prefer = (IC >= 32 || OC >= 32);
- //! quantized algo use matmul when direct algo is unusable
- if (param.src_type.category() == DTypeCategory::QUANTIZED) {
- im2col_prefer = is_matmul_quantized_prefer(param);
- }
- //! conv1x1
- im2col_prefer |= (FH == 1 && FW == 1);
- //! x86 8x8x16 not optimized, so it will use fallback im2col+matmul
- if (param.deduce_algo_data_type() == AlgoDataType::INT8X8X16) {
- im2col_prefer = true;
- }
- if (im2col_prefer) {
- return {AlgoCategory::IM2COL, AlgoCategory::DIRECT,
- AlgoCategory::NAIVE};
- } else {
- return {AlgoCategory::DIRECT, AlgoCategory::IM2COL,
- AlgoCategory::NAIVE};
- }
- }
-
- // vim: syntax=cpp.doxygen
|