|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import abc
- import json
- import sys
- from typing import Callable, Sequence
-
- import numpy as np
-
- from ..core import _imperative_rt as rt
- from ..core._imperative_rt.core2 import SymbolVar
- from ..core._wrap import Device
- from ..core.ops import builtin
- from ..core.tensor.array_method import ArrayMethodMixin
- from ..core.tensor.indexing import getitem as _getitem
- from ..core.tensor.indexing import setitem as _setitem
- from ..core.tensor.megbrain_graph import InputNode, OutputNode
- from ..tensor import Tensor
- from .comp_graph_tools import replace_vars
- from .module_stats import (
- preprocess_receptive_field,
- register_flops,
- register_receptive_field,
- )
-
-
- class NetworkNode:
- pass
-
-
- class VarNodeMeta(type(SymbolVar), type(ArrayMethodMixin)):
- pass
-
-
- class VarNode(NetworkNode, SymbolVar, ArrayMethodMixin, metaclass=VarNodeMeta):
- def __init__(self, var=None, *, owner_opr=None, name=None):
- SymbolVar.__init__(self, var)
- self.owner = owner_opr
- self.name = name
- self.id = id(self)
-
- @classmethod
- def load(cls, sym_var, owner_opr):
- obj = cls()
- obj.var = sym_var # mgb varnode
- obj.name = sym_var.name
- obj.owner = owner_opr
- return obj
-
- @property
- def shape(self):
- rst = None
- if self.var:
- try:
- rst = self.var.shape
- except:
- rst = None
- return rst
-
- @property
- def dtype(self):
- return self.var.dtype if self.var else None
-
- def __bool__(self):
- return False
-
- __index__ = None
- __int__ = None
- __float__ = None
- __complex__ = None
-
- def __hash__(self):
- return id(self)
-
- @property
- def _tuple_shape(self):
- return self.var.shape
-
- def numpy(self):
- o = OutputNode(self.var)
- self.graph.compile(o.outputs).execute()
- return o.get_value().numpy()
-
- def __getitem__(self, index):
- return _getitem(self, index)
-
- def __setitem__(self, index, value):
- if index is not Ellipsis:
- value = _setitem(self, index, value)
- if self.owner is not None:
- idx = self.owner.outputs.index(self)
- self.owner.outputs[idx] = VarNode(
- self.var, owner_opr=self.owner, name=self.var.name
- )
- self.var = value.var
- self.owner = None
-
- def set_owner_opr(self, owner_opr):
- self.owner = owner_opr
-
-
- class OpNode(NetworkNode):
-
- opdef = None
- type = None
-
- def __init__(self):
- self.inputs = []
- self.outputs = []
- self.params = {}
- self._opr = None # mgb opnode
- self.id = id(self)
-
- @classmethod
- def load(cls, opr):
- obj = cls()
- obj.params = json.loads(opr.params)
- obj.name = opr.name
- obj._opr = opr
- return obj
-
- def compile(self, graph=None):
- op = self.opdef(**self.params)
- args = [i.var for i in self.inputs]
- outputs = rt.invoke_op(op, args)
- assert len(outputs) == len(self.outputs)
- self._opr = outputs[0].owner
- for i in range(len(self.outputs)):
- self.outputs[i].var = outputs[i]
- self.outputs[i].var.name = self.outputs[i].name
- assert self.outputs[i].owner is self
-
- def add_inp_var(self, x):
- self.inputs.append(x)
-
- def add_out_var(self, x):
- self.outputs.append(x)
-
-
- def str_to_mge_class(classname):
- # TODO: use megbrain C++ RTTI to replace type string
- if classname == "RNGOpr<MegDNNOpr>":
- classname = "RNGOpr"
- oprcls = getattr(sys.modules[__name__], classname, None)
- return oprcls if oprcls else ReadOnlyOpNode
-
-
- class Host2DeviceCopy(OpNode):
- type = "Host2DeviceCopy"
-
- def __init__(self, shape=None, dtype=None, name=None, device=None):
- super().__init__()
- self.shape = shape
- self.dtype = dtype
- self.name = name
- self.device = Device(device).to_c() if device else Device("xpux").to_c()
- self.outputs = []
-
- @classmethod
- def load(cls, opr):
- self = cls()
- self.outputs = []
- assert len(opr.outputs) == 1, "wrong number of outputs"
- self.shape = opr.outputs[0].shape
- self.dtype = opr.outputs[0].dtype
- self.name = opr.outputs[0].name
- self.device = opr.outputs[0].comp_node
- self._opr = opr
- return self
-
- def compile(self, graph):
- outputs = rt.make_h2d(graph, self.device, self.dtype, self.shape, self.name)
- self._opr = outputs.owner
- if len(self.outputs) == 0:
- self.outputs.append(VarNode(owner_opr=self, name=self.name))
- self.outputs[0].var = outputs
- assert self.outputs[0].owner is self
-
-
- class ImmutableTensor(OpNode):
- type = "ImmutableTensor"
-
- def __init__(self, data=None, name=None, device=None, graph=None):
- super().__init__()
- self.name = name
- self.outputs = []
- self.graph = graph
- if data is not None:
- self.set_value(data, device)
-
- @property
- def device(self):
- return self._opr.outputs[0].comp_node if self._opr else None
-
- @device.setter
- def device(self, device):
- self.set_value(self.numpy(), device)
-
- @property
- def shape(self):
- return self.outputs[0].shape
-
- @property
- def dtype(self):
- return self._opr.outputs[0].dtype if self._opr else None
-
- def numpy(self):
- return self._opr.outputs[0].value if self._opr else None
-
- def set_value(self, data, device=None):
- assert self.graph is not None
- cn = device if device else self.device
- assert isinstance(data, (int, float, Sequence, np.ndarray))
- if not isinstance(data, np.ndarray):
- data = np.array(data)
- if data.dtype == np.float64:
- data = data.astype(np.float32)
- elif data.dtype == np.int64:
- data = data.astype(np.int32)
- varnode = rt.make_const(self.graph, data, cn, data.dtype, self.name)
- if len(self.outputs) == 0:
- self.outputs.append(VarNode(owner_opr=self, name=self.name))
- self.outputs[0].var = varnode
- self._opr = varnode.owner
-
- @classmethod
- def load(cls, opr):
- self = cls()
- self.outputs = []
- self._opr = opr
- self.name = opr.outputs[0].name
- self.graph = opr.graph
- return self
-
- def compile(self, graph):
- assert self.outputs[0].var is self._opr.outputs[0]
- assert self.outputs[0].owner is self
- if self.graph != graph:
- self.graph = graph
- self.set_value(self.numpy())
- if self.name is not None:
- self.outputs[0].var.name = self.name
-
-
- class ReadOnlyOpNode(OpNode):
- @classmethod
- def load(cls, opr):
- obj = super(ReadOnlyOpNode, cls).load(opr)
- obj.type = opr.type
- return obj
-
- def compile(self):
- assert self._opr is not None
- assert len(self.inputs) == len(self._opr.inputs)
- assert len(self.outputs) == len(self._opr.outputs)
- repl_dict = {}
- for ind, i in enumerate(self.inputs):
- if i.var != self._opr.inputs[ind]:
- repl_dict[self._opr.inputs[ind]] = i.var
- if bool(repl_dict):
- out_vars = replace_vars(self._opr.outputs, repl_dict)
- for ind, o in enumerate(self.outputs):
- o.var = out_vars[ind]
-
-
- class Elemwise(OpNode):
- type = "Elemwise"
- opdef = builtin.Elemwise
-
-
- class ElemwiseMultiType(OpNode):
- type = "ElemwiseMultiType"
- opdef = builtin.ElemwiseMultiType
-
- @classmethod
- def load(cls, opr):
- obj = super(ElemwiseMultiType, cls).load(opr)
- obj.params["dtype"] = opr.outputs[0].dtype
- return obj
-
-
- @register_flops(Elemwise, ElemwiseMultiType)
- def flops_elemwise(opnode: Elemwise, inputs, outputs):
- return np.prod(outputs[0].shape)
-
-
- class Reduce(OpNode):
- type = "Reduce"
- opdef = builtin.Reduce
-
-
- class TypeCvt(OpNode):
- type = "TypeCvt"
- opdef = builtin.TypeCvt
-
- @classmethod
- def load(cls, opr):
- obj = super(TypeCvt, cls).load(opr)
- t_dtype = opr.outputs[0].dtype
- obj.params["dtype"] = t_dtype
- return obj
-
-
- class MatrixInverse(OpNode):
- type = "MatrixInverse"
- opdef = builtin.MatrixInverse
-
-
- class MatrixMul(OpNode):
- type = "MatrixMul"
- opdef = builtin.MatrixMul
-
-
- @register_flops(MatrixMul)
- def flops_matmul(opnode: MatrixMul, inputs, outputs):
- assert len(inputs[0].shape) == 2 and len(outputs[0].shape) == 2
- mid_shape = inputs[0].shape[1]
- return np.prod(outputs[0].shape) * mid_shape
-
-
- class BatchedMatrixMul(OpNode):
- type = "BatchedMatmul"
- opdef = builtin.BatchedMatrixMul
-
-
- @register_flops(BatchedMatrixMul)
- def flops_batchmatmul(opnode: BatchedMatrixMul, inputs, outputs):
- assert len(inputs[0].shape) == 3 and len(outputs[0].shape) == 3
- mid_shape = inputs[0].shape[2]
- return np.prod(outputs[0].shape) * mid_shape
-
-
- class Dot(OpNode):
- type = "Dot"
- opdef = builtin.Dot
-
-
- class SVD(OpNode):
- type = "SVD"
- opdef = builtin.SVD
-
-
- class ConvolutionForward(OpNode):
- type = "Convolution"
- opdef = builtin.Convolution
-
-
- class ConvolutionBackwardData(OpNode):
- type = "ConvTranspose"
- opdef = builtin.ConvolutionBackwardData
-
-
- class DeformableConvForward(OpNode):
- type = "DeformableConv"
- opdef = builtin.DeformableConv
-
-
- class GroupLocalForward(OpNode):
- type = "GroupLocal"
- opdef = builtin.GroupLocal
-
-
- class PoolingForward(OpNode):
- type = "Pooling"
- opdef = builtin.Pooling
-
-
- class AdaptivePoolingForward(OpNode):
- type = "AdaptivePooling"
- opdef = builtin.AdaptivePooling
-
-
- class ROIPoolingForward(OpNode):
- type = "ROIPooling"
- opdef = builtin.ROIPooling
-
-
- class DeformablePSROIPoolingForward(OpNode):
- type = "DeformablePSROIPooling"
- opdef = builtin.DeformablePSROIPooling
-
-
- class ConvBiasForward(OpNode):
- type = "ConvBias"
- opdef = builtin.ConvBias
-
- @classmethod
- def load(cls, opr):
- obj = super(ConvBiasForward, cls).load(opr)
- obj.params["dtype"] = opr.outputs[0].dtype
- return obj
-
-
- @register_flops(
- ConvolutionForward, ConvBiasForward,
- )
- def flops_conv(opnode: ConvolutionForward, inputs, outputs):
- param_W_shape = inputs[1].shape
- kh = param_W_shape[-2]
- kw = param_W_shape[-1]
- if len(param_W_shape) == 5:
- num_input = param_W_shape[2]
- else:
- num_input = param_W_shape[1]
- NCHW = np.prod(outputs[0].shape)
- bias = 1 if isinstance(opnode, ConvBiasForward) else 0
- # N x Cout x H x W x (Cin x Kw x Kh)
- return NCHW * (num_input * kw * kh + bias)
-
-
- @register_receptive_field(ConvolutionForward, ConvBiasForward)
- def receptive_field(opnode: ConvolutionForward, inputs, outputs):
- pre_rf, pre_stride = preprocess_receptive_field(opnode, inputs, outputs)
- param_W_shape = inputs[1].shape
- kh = param_W_shape[-2]
- kw = param_W_shape[-1]
- rf = (
- kh * pre_stride[0] + pre_rf[0] - pre_stride[0],
- kw * pre_stride[1] + pre_rf[1] - pre_stride[1],
- )
- stride = (
- opnode.params["stride_h"] * pre_stride[0],
- opnode.params["stride_w"] * pre_stride[1],
- )
- opnode._rf = rf
- opnode._stride = stride
- return rf, stride
-
-
- class BatchConvBiasForward(OpNode):
- type = "BatchConvBias"
- opdef = builtin.BatchConvBias
-
- @classmethod
- def load(cls, opr):
- obj = super(BatchConvBiasForward, cls).load(opr)
- obj.params["dtype"] = opr.outputs[0].dtype
- return obj
-
-
- class BatchNormForward(OpNode):
- type = "BatchNorm"
- opdef = builtin.BatchNorm
- output_idx = -1
-
-
- class ROIAlignForward(OpNode):
- type = "ROIAlign"
- opdef = builtin.ROIAlign
-
-
- class WarpPerspectiveForward(OpNode):
- type = "WarpPerspective"
- opdef = builtin.WarpPerspective
-
-
- class WarpAffineForward(OpNode):
- type = "WarpAffine"
- opdef = builtin.WarpAffine
-
-
- class RemapForward(OpNode):
- type = "Remap"
- opdef = builtin.Remap
-
-
- class ResizeForward(OpNode):
- type = "Resize"
- opdef = builtin.Resize
-
-
- class IndexingOneHot(OpNode):
- type = "IndexingOneHot"
- opdef = builtin.IndexingOneHot
-
-
- class IndexingSetOneHot(OpNode):
- type = "IndexingSetOneHot"
- opdef = builtin.IndexingSetOneHot
-
-
- class Copy(OpNode):
- type = "Copy"
- opdef = builtin.Copy
-
- @classmethod
- def load(cls, opr):
- obj = super(Copy, cls).load(opr)
- obj.params["comp_node"] = opr.outputs[0].comp_node
- return obj
-
-
- class ArgsortForward(OpNode):
- type = "Argsort"
- opdef = builtin.Argsort
-
-
- class Argmax(OpNode):
- type = "Argmax"
- opdef = builtin.Argmax
-
-
- class Argmin(OpNode):
- type = "Argmin"
- opdef = builtin.Argmin
-
-
- class CondTake(OpNode):
- type = "CondTake"
- opdef = builtin.CondTake
-
-
- class TopK(OpNode):
- type = "TopK"
- opdef = builtin.TopK
-
-
- class NvOf(OpNode):
- type = "NvOf"
- opdef = builtin.NvOf
-
-
- class RNGOpr(OpNode):
- @classmethod
- def load(cls, opr):
- obj = super(RNGOpr, cls).load(opr)
- if len(obj.params) == 3:
- obj.opdef = builtin.GaussianRNG
- obj.type = "GaussianRNG"
- else:
- obj.opdef = builtin.UniformRNG
- obj.type = "UniformRNG"
- return obj
-
-
- class Linspace(OpNode):
- type = "Linspace"
- opdef = builtin.Linspace
-
- @classmethod
- def load(cls, opr):
- obj = super(Linspace, cls).load(opr)
- obj.params["comp_node"] = opr.outputs[0].comp_node
- return obj
-
-
- class Eye(OpNode):
- type = "Eye"
- opdef = builtin.Eye
-
- @classmethod
- def load(cls, opr):
- obj = super(Eye, cls).load(opr)
- obj.params["dtype"] = opr.outputs[0].dtype
- obj.params["comp_node"] = opr.outputs[0].comp_node
- return obj
-
-
- class GetVarShape(OpNode):
- type = "GetVarShape"
- opdef = builtin.GetVarShape
-
-
- class Concat(OpNode):
- type = "Concat"
- opdef = builtin.Concat
-
- @classmethod
- def load(cls, opr):
- obj = super(Concat, cls).load(opr)
- obj.params["comp_node"] = Device("xpux").to_c()
- return obj
-
-
- class Broadcast(OpNode):
- type = "Broadcast"
- opdef = builtin.Broadcast
-
-
- class Identity(OpNode):
- type = "Identity"
- opdef = builtin.Identity
-
-
- class NMSKeep(OpNode):
- type = "NMSKeep"
- opdef = builtin.NMSKeep
-
-
- # class ParamPackSplit
- # class ParamPackConcat
-
-
- class Dimshuffle(OpNode):
- type = "Dimshuffle"
- opdef = builtin.Dimshuffle
-
- @classmethod
- def load(cls, opr):
- obj = super(Dimshuffle, cls).load(opr)
- del obj.params["ndim"]
- return obj
-
-
- class Reshape(OpNode):
- type = "Reshape"
- opdef = builtin.Reshape
-
-
- class AxisAddRemove(OpNode):
- type = "AxisAddRemove"
-
- @classmethod
- def load(cls, opr):
- obj = cls()
- obj.name = opr.name
- obj._opr = opr
- params = json.loads(opr.params)
- desc = params["desc"]
- method = None
- axis = []
- for i in desc:
- if method is None:
- method = i["method"]
- assert method == i["method"]
- axis.append(i["axisnum"])
- obj.params = {"axis": axis}
- obj.opdef = builtin.AddAxis if desc[0]["method"] == 0 else builtin.RemoveAxis
- return obj
-
-
- class IndexingBase(OpNode):
- @classmethod
- def load(cls, opr):
- obj = cls()
- obj.name = opr.name
- obj._opr = opr
- params = json.loads(opr.params)
- items = [
- [
- p["axis"],
- bool(p["begin"]),
- bool(p["end"]),
- bool(p["step"]),
- bool(p["idx"]),
- ]
- for p in params
- ]
- obj.params["items"] = items
- return obj
-
-
- class Subtensor(IndexingBase):
- type = "Subtensor"
- opdef = builtin.Subtensor
-
-
- class SetSubtensor(IndexingBase):
- type = "SetSubtensor"
- opdef = builtin.SetSubtensor
-
-
- class IncrSubtensor(IndexingBase):
- type = "IncrSubtensor"
- opdef = builtin.IncrSubtensor
-
-
- class IndexingMultiAxisVec(IndexingBase):
- type = "IndexingMultiAxisVec"
- opdef = builtin.IndexingMultiAxisVec
-
-
- class IndexingSetMultiAxisVec(IndexingBase):
- type = "IndexingSetMultiAxisVec"
- opdef = builtin.IndexingSetMultiAxisVec
-
-
- class IndexingIncrMultiAxisVec(IndexingBase):
- type = "IndexingIncrMultiAxisVec"
- opdef = builtin.IndexingIncrMultiAxisVec
-
-
- class MeshIndexing(IndexingBase):
- type = "MeshIndexing"
- opdef = builtin.MeshIndexing
-
-
- class SetMeshIndexing(IndexingBase):
- type = "SetMeshIndexing"
- opdef = builtin.SetMeshIndexing
-
-
- class IncrMeshIndexing(IndexingBase):
- type = "IncrMeshIndexing"
- opdef = builtin.IncrMeshIndexing
-
-
- class BatchedMeshIndexing(IndexingBase):
- type = "BatchedMeshIndexing"
- opdef = builtin.BatchedMeshIndexing
-
-
- class BatchedSetMeshIndexing(IndexingBase):
- type = "BatchedSetMeshIndexing"
- opdef = builtin.BatchedSetMeshIndexing
-
-
- class BatchedIncrMeshIndexing(IndexingBase):
- type = "BatchedIncrMeshIndexing"
- opdef = builtin.BatchedIncrMeshIndexing
-
-
- # class CollectiveComm
- # class RemoteSend
- # class RemoteRecv
- # class TQT
- # class FakeQuant
- # class InplaceAdd
-
-
- class AssertEqual(OpNode):
- type = "AssertEqual"
- opdef = builtin.AssertEqual
-
-
- class CvtColorForward(OpNode):
- type = "CvtColor"
- opdef = builtin.CvtColor
|