|
- #include "src/cuda/conv_bias/algo.h"
- #include "src/cuda/utils.h"
-
- using namespace megdnn;
- using namespace cuda;
-
- ConvBiasForwardImpl::AlgoPack::AlgoPack() {
- non_cudnn_algos.push_back(&chanwise);
- non_cudnn_algos.push_back(&chanwise_small);
- non_cudnn_algos.push_back(&depthwise_large_filter);
-
- non_cudnn_algos.push_back(&inplace_matmul);
- non_cudnn_algos.push_back(&matmul);
- non_cudnn_algos.push_back(&matmul8x8x32);
- non_cudnn_algos.push_back(&batched_matmul);
- non_cudnn_algos.push_back(&int1_simple);
-
- #if CUDNN_VERSION >= 8020
- all_algos.push_back(&cudnn_conv_v8);
- all_algos.push_back(&cudnn_conv_bias_activation_v8);
- #endif
-
- fill_cudnn_algos();
- for (auto&& algo : cudnn_conv_bias_activations) {
- all_algos.push_back(&algo);
- }
-
- //! add conv+nonlinear algos
- std::vector<AlgoBase*> conv_algos;
- conv_algos.push_back(&chanwise);
- conv_algos.push_back(&chanwise_small);
- conv_algos.push_back(&depthwise_large_filter);
- conv_algos.push_back(&chanwise8x8x32);
- for (auto&& algo : cudnn_convs) {
- conv_algos.push_back(&algo);
- }
- conv_algos.push_back(&inplace_matmul);
- conv_algos.push_back(&matmul);
- conv_algos.push_back(&matmul8x8x32);
- conv_algos.push_back(&batched_matmul);
- conv_algos.push_back(&group);
- conv_algos.push_back(&int1_simple);
-
- for (auto&& algo : conv_algos) {
- all_algos.push_back(algo);
- }
-
- all_algos.push_back(&bfloat16);
- bfloat16_algos.push_back(&bfloat16);
-
- size_t all_algo_size = all_algos.size();
- #if CUDA_VERSION >= 10000
- fill_imma_algos();
- all_algos.push_back(&wmma_quint4x4x32);
- for (auto&& algo : int8_nchw4_imma) {
- all_algos.push_back(&algo);
- }
- for (auto&& algo : int8_chwn4_imma) {
- all_algos.push_back(&algo);
- }
- for (auto&& algo : int8_chwn4_imma_reorder_filter) {
- all_algos.push_back(&algo);
- }
- for (auto&& algo : int8_chwn4_imma_unroll_width) {
- all_algos.push_back(&algo);
- }
- #if CUDA_VERSION >= 10020
- for (auto&& algo : int8_nchw32_imma) {
- all_algos.push_back(&algo);
- }
- for (auto&& algo : int8_nhwc_imma) {
- all_algos.push_back(&algo);
- }
- for (auto&& algo : int4_int4_nchw64_imma) {
- all_algos.push_back(&algo);
- }
- for (auto&& algo : uint4_int4_nchw64_imma) {
- all_algos.push_back(&algo);
- }
- for (auto&& algo : int4_int4_nhwc_imma) {
- all_algos.push_back(&algo);
- }
- for (auto&& algo : uint4_int4_nhwc_imma) {
- all_algos.push_back(&algo);
- }
- #endif
- #endif
- fill_dp4a_algos();
- for (auto&& algo : int8_nchw4_dotprod) {
- all_algos.push_back(&algo);
- }
- fill_dwconv_algos();
- all_algos.push_back(&int8_chwn4_dotprod);
- all_algos.push_back(&fallback_nchw_qs8);
- for (size_t i = all_algo_size; i < all_algos.size(); ++i) {
- non_cudnn_algos.push_back(all_algos[i]);
- }
-
- for (auto&& algo : all_algos) {
- m_all_algos_map.emplace(algo->info().desc, algo);
- }
- }
-
- ConvBiasForwardImpl::AlgoPack ConvBiasForwardImpl::sm_algo_pack;
-
- MEGDNN_DEF_GET_ALGO_FROM_DESC(ConvBiasForwardImpl)
-
- ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
- const ConvBiasForwardImpl* o, const TensorLayout& src,
- const TensorLayout& filter, const TensorLayout& bias, const TensorLayout& z,
- const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter)
- : SizeArgs(
- o, src, filter, o->make_canonized_filter_meta(src.ndim, filter), bias,
- z, dst, preprocessed_filter) {}
-
- ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
- const ConvBiasForwardImpl* o, const TensorLayout& src,
- const TensorLayout& filter, const CanonizedFilterMeta& filter_meta,
- const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
- const PreprocessedFilter* preprocessed_filter)
- : BiasForwardSizeArgs{concrete_handle(o->handle()),
- &src,
- &filter,
- &bias,
- &z,
- filter_meta,
- &dst,
- o->param().nonlineMode},
- opr{o},
- preprocessed_filter{preprocessed_filter} {}
-
- ConvBiasForwardImpl::AlgoBase::ExecArgs::ExecArgs(
- ConvBiasForwardImpl* opr, _megdnn_tensor_in src, _megdnn_tensor_in filter,
- _megdnn_tensor_in bias, _megdnn_tensor_in z, _megdnn_tensor_out dst,
- _megdnn_workspace workspace, const PreprocessedFilter* preprocessed_filter)
- : SizeArgs(
- opr, src.layout, filter.layout, bias.layout, z.layout, dst.layout,
- preprocessed_filter),
- src_tensor{&src},
- filter_tensor{&filter},
- bias_tensor{&bias},
- z_tensor{&z},
- dst_tensor{&dst},
- workspace{workspace} {}
-
- std::string ConvBiasForwardImpl::AlgoBase::SizeArgs::to_string() const {
- auto&& fm = filter_meta;
- MEGDNN_MARK_USED_VAR(fm);
- std::string nonlinear_mode_str;
- switch (nonlinear_mode) {
- case param::ConvBias::NonlineMode::RELU:
- nonlinear_mode_str = "RELU";
- break;
- case param::ConvBias::NonlineMode::SIGMOID:
- nonlinear_mode_str = "SIGMOID";
- break;
- case param::ConvBias::NonlineMode::IDENTITY:
- nonlinear_mode_str = "IDENTITY";
- break;
- case param::ConvBias::NonlineMode::H_SWISH:
- nonlinear_mode_str = "H_SWISH";
- break;
- default:
- megdnn_throw("invalid conv bias nonlinear mode");
- }
- return ssprintf(
- "src=%s, filter=%s, bias=%s, z=%s, dst=%s, "
- "pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s, "
- "nonlinear_mode=%s",
- src_layout->to_string().c_str(), filter_layout->to_string().c_str(),
- bias_layout->to_string().c_str(), z_layout->to_string().c_str(),
- dst_layout->to_string().c_str(), fm.padding[0], fm.padding[1], fm.stride[0],
- fm.stride[1], fm.dilation[0], fm.dilation[1], !fm.should_flip,
- src_layout->dtype.name(), dst_layout->dtype.name(),
- nonlinear_mode_str.c_str());
- }
-
- param::Convolution ConvBiasForwardImpl::AlgoBase::get_param_convolution(
- const SizeArgs& args) const {
- param::Convolution::Mode mode;
- param::Convolution::Sparse sparse = args.filter_meta.group > 1
- ? param::Convolution::Sparse::GROUP
- : param::Convolution::Sparse::DENSE;
- if (args.filter_meta.should_flip) {
- mode = param::Convolution::Mode::CONVOLUTION;
- } else {
- mode = param::Convolution::Mode::CROSS_CORRELATION;
- }
- return param::Convolution{
- mode,
- args.filter_meta.padding[0],
- args.filter_meta.padding[1],
- args.filter_meta.stride[0],
- args.filter_meta.stride[1],
- args.filter_meta.dilation[1],
- args.filter_meta.dilation[0],
- sparse,
- args.filter_meta.format,
- args.opr->param().compute_mode};
- }
-
- void ConvBiasForwardImpl::AlgoPack::fill_cudnn_algos() {
- for (auto&& algo : CudnnAlgoPack::conv_fwd_algos()) {
- cudnn_conv_bias_activations.push_back(algo.first);
- cudnn_convs.push_back(algo.first);
- }
- }
-
- #if CUDA_VERSION >= 10000
- void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() {
- int8_chwn4_imma.push_back(
- {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA16x16x16});
- int8_chwn4_imma.push_back(
- {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA32x8x16});
- int8_chwn4_imma.push_back(
- {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA8x32x16});
- int8_nchw4_imma.push_back(
- {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA16x16x16});
- int8_nchw4_imma.push_back(
- {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA32x8x16});
- int8_nchw4_imma.push_back(
- {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA8x32x16});
- int8_chwn4_imma_reorder_filter.push_back(
- {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::IMMA16x16x16});
- int8_chwn4_imma_reorder_filter.push_back(
- {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::IMMA32x8x16});
- int8_chwn4_imma_reorder_filter.push_back(
- {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::IMMA8x32x16});
- int8_chwn4_imma_unroll_width.push_back(
- {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::IMMA16x16x16});
- int8_chwn4_imma_unroll_width.push_back(
- {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::IMMA32x8x16});
- int8_chwn4_imma_unroll_width.push_back(
- {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::IMMA8x32x16});
- #if CUDA_VERSION >= 10020
- {
- using AlgoParam = AlgoInt8NCHW32IMMAImplicitGemm::AlgoParam;
- int8_nchw32_imma.emplace_back(AlgoParam{128, 256, 64, 64, 64, 64, 8, 8, 16, 2});
- int8_nchw32_imma.emplace_back(AlgoParam{256, 128, 64, 64, 64, 64, 8, 8, 16, 2});
- int8_nchw32_imma.emplace_back(AlgoParam{128, 128, 64, 64, 64, 64, 8, 8, 16, 2});
- int8_nchw32_imma.emplace_back(AlgoParam{128, 64, 64, 64, 32, 64, 8, 8, 16, 2});
- int8_nchw32_imma.emplace_back(AlgoParam{64, 128, 64, 32, 64, 64, 8, 8, 16, 2});
- int8_nchw32_imma.emplace_back(AlgoParam{128, 64, 32, 64, 32, 32, 8, 8, 16, 1});
- int8_nchw32_imma.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1});
- int8_nchw32_imma.emplace_back(AlgoParam{64, 128, 32, 32, 64, 32, 8, 8, 16, 1});
- int8_nchw32_imma.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 8, 8, 16, 1});
- }
- {
- using AlgoParam = AlgoInt8NHWCIMMAImplicitGemm::AlgoParam;
- int8_nhwc_imma.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 16});
- int8_nhwc_imma.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 8});
- int8_nhwc_imma.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 4});
- int8_nhwc_imma.emplace_back(
- AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 16});
- int8_nhwc_imma.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 8});
- int8_nhwc_imma.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 4});
- }
- {
- using AlgoParam = AlgoInt4Int4NCHW64IMMAImplicitGemm::AlgoParam;
- int4_int4_nchw64_imma.emplace_back(
- AlgoParam{128, 128, 128, 64, 64, 128, 8, 8, 32, 2});
- int4_int4_nchw64_imma.emplace_back(
- AlgoParam{128, 256, 128, 64, 64, 128, 8, 8, 32, 2});
- int4_int4_nchw64_imma.emplace_back(
- AlgoParam{128, 64, 128, 64, 64, 128, 8, 8, 32, 2});
- int4_int4_nchw64_imma.emplace_back(
- AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1});
- }
- {
- using AlgoParam = AlgoUInt4Int4NCHW64IMMAImplicitGemm::AlgoParam;
- uint4_int4_nchw64_imma.emplace_back(
- AlgoParam{128, 128, 128, 64, 64, 128, 8, 8, 32, 2});
- uint4_int4_nchw64_imma.emplace_back(
- AlgoParam{128, 256, 128, 64, 64, 128, 8, 8, 32, 2});
- uint4_int4_nchw64_imma.emplace_back(
- AlgoParam{128, 64, 128, 64, 64, 128, 8, 8, 32, 2});
- uint4_int4_nchw64_imma.emplace_back(
- AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1});
- }
- {
- using AlgoParam = AlgoInt4Int4NHWCIMMAImplicitGemm::AlgoParam;
- int4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 32});
- int4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 16});
- int4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 8});
- int4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 32});
- int4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 16});
- int4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 8});
- int4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 32});
- int4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 16});
- int4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 8});
- }
- {
- using AlgoParam = AlgoUInt4Int4NHWCIMMAImplicitGemm::AlgoParam;
- uint4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 32});
- uint4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 16});
- uint4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 8});
- uint4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 32});
- uint4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 16});
- uint4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 8});
- uint4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 32});
- uint4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 16});
- uint4_int4_nhwc_imma.emplace_back(
- AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 8});
- }
- #endif
- }
- #endif
-
- void ConvBiasForwardImpl::AlgoPack::fill_dwconv_algos() {
- using AlgoParam = AlgoCutlassConvolutionBase::AlgoParam;
- /// preferred algo
- f32_implicit_bmm.emplace_back(AlgoParam{64, 128, 8, 32, 64, 8, 1, 1, 1, 2});
- f32_implicit_bmm.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 1, 1, 1, 2});
- f32_implicit_bmm.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 1, 1, 1, 2});
- f32_implicit_bmm.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 1, 1, 1, 2});
- f32_implicit_bmm.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 1, 1, 1, 2});
- f32_implicit_bmm.emplace_back(AlgoParam{64, 64, 8, 32, 64, 8, 1, 1, 1, 2});
- f32_implicit_bmm.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 1, 1, 1, 2});
- f32_implicit_bmm.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 1, 1, 1, 2});
- f32_implicit_bmm.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 1, 1, 1, 2});
- for (auto&& algo : f32_implicit_bmm) {
- all_algos.push_back(&algo);
- }
- #if CUDA_VERSION >= 10010
- /// preferred algo
- f16_implicit_bmm.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2});
- f16_implicit_bmm.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2});
- f16_implicit_bmm.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2});
- f16_implicit_bmm.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2});
- f16_implicit_bmm.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2});
- for (auto&& algo : f16_implicit_bmm) {
- all_algos.push_back(&algo);
- }
- #endif
- }
-
- void ConvBiasForwardImpl::AlgoPack::fill_dp4a_algos() {
- using AlgoParam = AlgoInt8NCHW4DotProdImplicitGemm::AlgoParam;
- int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32, 1, 1, 4, 2});
- int8_nchw4_dotprod.emplace_back(AlgoParam{128, 64, 32, 64, 32, 32, 1, 1, 4, 2});
- int8_nchw4_dotprod.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 1, 1, 4, 2});
- int8_nchw4_dotprod.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 1, 1, 4, 2});
- int8_nchw4_dotprod.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 1, 4, 2});
- int8_nchw4_dotprod.emplace_back(AlgoParam{32, 64, 32, 32, 64, 32, 1, 1, 4, 2});
- int8_nchw4_dotprod.emplace_back(AlgoParam{64, 32, 32, 64, 32, 32, 1, 1, 4, 2});
- int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1, 1, 4, 1});
- int8_nchw4_dotprod.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 1, 1, 4, 2});
- }
-
- ConvBiasForwardImpl::AlgoBase* ConvBiasForwardImpl::AlgoPack::cudnn_conv_from_enum(
- cudnnConvolutionFwdAlgo_t algo) {
- for (auto&& i : cudnn_convs) {
- if (i.cudnn_enum() == algo)
- return &i;
- }
- megdnn_throw(ssprintf(
- "can not find cudnn conv fwd algorithm %d", static_cast<int>(algo)));
- }
-
- ConvBiasForwardImpl::AlgoBase* ConvBiasForwardImpl::AlgoPack::
- cudnn_conv_bias_act_from_enum(cudnnConvolutionFwdAlgo_t algo) {
- for (auto&& i : cudnn_conv_bias_activations) {
- if (i.cudnn_enum() == algo)
- return &i;
- }
- megdnn_throw(ssprintf(
- "can not find cudnn conv bias act algorithm %d", static_cast<int>(algo)));
- }
-
- // vim: syntax=cpp.doxygen
|