|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import functools
- import heapq
- import itertools
- import typing
- import weakref
-
- import numpy as np
-
- from .._imperative_rt import core2, ops
- from ..ops.builtin import Elemwise, OpDef, RemoteSend
- from ..ops.special import Const
-
- _grad_count = 0
- _grad_manager_dict = weakref.WeakValueDictionary()
-
-
- def get_grad_managers():
- return [_grad_manager_dict[key] for key in _grad_manager_dict]
-
-
- class GradKey(core2.GradKey):
- def __init__(self, name=None):
- if name:
- self.name = name
-
- def backward(self, ys, dys):
- return core2.backward(self, ys, dys)
-
-
- class Grad:
- def __init__(self, name=None):
- global _grad_count
- if name is None:
- name = "grad_%d" % _grad_count
- _grad_count += 1
- self._refkeeper = []
- self._impl = GradKey(name)
- _grad_manager_dict[self._name] = self
-
- @property
- def _priority(self):
- return self._impl.priority
-
- @_priority.setter
- def _priority(self, priority):
- self._impl.priority = priority
-
- @property
- def _name(self):
- return self._impl.name
-
- def _is_attached_to(self, tensor):
- return self._impl.is_attached_to(tensor)
-
- def wrt(self, *tensors, callback=None):
- for x in tensors:
- self._impl.attach(x, callback)
- return self
-
- def __call__(self, ys, dys):
- from collections.abc import Sequence
-
- if not isinstance(ys, Sequence):
- ys = [ys]
- if not isinstance(dys, Sequence):
- dys = [dys]
-
- self._impl.backward(ys, dys)
-
- self._refkeeper = None
-
- def __enter__(self):
- return self
-
- def __exit__(self, _1, _2, _3):
- self._refkeeper = None
- del self._impl
-
-
- class Function(ops.PyOpBase):
- r"""Defines a block of operations with customizable differentiation.
-
- The computation should be defined in ``forward`` method, with gradient
- computation defined in ``backward`` method.
-
- Each instance of ``Function`` should be used only once during forwardding.
-
- Examples:
-
- .. code-block::
-
- class Sigmoid(Function):
- def forward(self, x):
- y = 1 / (1 + F.exp(-x))
- self.y = y
- return y
-
- def backward(self, dy):
- y = self.y
- """
-
- def forward(self, *args, **kwargs):
- r"""Applies operations to ``inputs`` and returns results. It must be overriden by all subclasses.
-
- Args:
- input: input tensors.
-
- Returns:
- a tuple of Tensor or a single Tensor.
-
- Note:
- * This method should return a tuple of Tensor or a single Tensor representing the output
- of the function.
- * positional arguments should all be Tensor
- """
- raise NotImplementedError
-
- def backward(self, *output_grads):
- r"""Compute the gradient of the forward function. It must be overriden by all subclasses.
-
- Args:
- output_grads: gradients of outputs that are returned by :meth:`forward`.
-
- Note:
- * In case when some tensors of outputs are not related to loss function, the corresponding
- values in ``output_grads`` would be ``None``.
- * This method should return a tuple which containing the gradients of all inputs, in the same order
- as the ``inputs`` argument of :meth:`forward` . A ``Tensor`` could be returned
- instead if there is only one input. If users want to stop the propagation of some gradients,
- the corresponding returned values should be set ``None`` .
- """
- raise NotImplementedError
-
- def _default_rule(self, *args):
- ret = self.forward(*args)
- self.__single_output = isinstance(ret, core2.Tensor)
- return ret
-
- def _grad_rule(self, *args):
- return self._default_rule(*args), self.backward
-
- def __call__(self, *args):
- ret = core2.apply(self, *args)
- if self.__single_output:
- (ret,) = ret
- return ret
-
- def __getstate__(self):
- return self.__dict__
-
- def __setstate__(self, state):
- self.__dict__.update(state)
|