|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import itertools
-
- import numpy as np
- import pytest
-
- import megengine.module as M
- from megengine import Parameter, tensor
- from megengine.functional.debug_param import (
- get_execution_strategy,
- set_execution_strategy,
- )
- from megengine.module import ConvTranspose2d, ConvTranspose3d, LocalConv2d
-
-
- @pytest.fixture
- def reproducible():
- old = get_execution_strategy()
- set_execution_strategy("HEURISTIC_REPRODUCIBLE")
- yield
- set_execution_strategy(old)
-
-
- # NOTE: test in module for convenience. should really test in functional
- @pytest.mark.parametrize(
- "name",
- ["Conv1d", "Conv2d", "Conv3d", "ConvTranspose2d", "ConvTranspose3d", "LocalConv2d"],
- )
- def test_conv_dtype_promotion(name, reproducible):
- N, Ci, Co, K = 2, 16, 32, 3
- S = (7,) * int(name[-2])
- if "Local" in name:
- m = getattr(M, name)(Ci, Co, *S, K)
- else:
- m = getattr(M, name)(Ci, Co, K)
- x = tensor(np.random.random(size=(N, Ci) + S).astype("float16"))
- np.testing.assert_equal(m(x).numpy(), m(x.astype("float32")).numpy())
|