|
- #pragma once
-
- #include "megbrain/test/helper.h"
-
- #include "megbrain/gopt/framework.h"
- #include "megbrain/opr/basic_arith_wrapper.h"
- #include "megbrain/opr/blas.h"
- #include "megbrain/opr/dnn/convolution.h"
- #include "megbrain/opr/dnn/pooling.h"
- #include "megbrain/opr/imgproc.h"
- #include "megbrain/opr/nn_int.h"
- #include "megbrain/opr/tensor_gen.h"
- #include "megbrain/opr/tensor_manip.h"
- #include "megbrain/opr/utility.h"
-
- namespace mgb {
- class Network {
- private:
- HostTensorGenerator<dtype::Float32, RandomDistribution::UNIFORM> gen{-0.01, 0.01};
- CompNode cn;
-
- public:
- std::shared_ptr<ComputingGraph> graph = ComputingGraph::make();
- Network(CompNode cn_) : cn{cn_} {}
- ~Network() noexcept = default;
- using KernSize = SmallVector<size_t, 2>;
- using Stride = SmallVector<size_t, 2>;
- using Padding = SmallVector<size_t, 2>;
- SymbolVar add_var(const char* name, const TensorShape& shp = {1}) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp), cn).rename(name);
- }
- SymbolVar add_cvar(const char* name, const TensorShape& shp = {1}) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp), cn).rename(name);
- }
-
- SymbolVar add_conv(
- SymbolVar f, size_t output_channels, KernSize kern_size,
- DType out_dtype = dtype::Float32(), bool has_relu = true,
- Stride stride = {1, 1}, Padding padding = {0, 0});
- SymbolVar add_group_conv(
- SymbolVar f, size_t output_channels, size_t groups, KernSize kern_size,
- DType out_dtype = dtype::Float32(), bool has_relu = true,
- Stride stride = {1, 1}, Padding padding = {0, 0});
- SymbolVar add_deconv(
- SymbolVar f, size_t ratio, size_t output_channels, DType out_dtype);
- SymbolVar add_elemwise(
- const SymbolVarArray inps, DType out_dtype = dtype::Float32(),
- opr::Elemwise::Param::Mode mode = opr::Elemwise::Param::Mode::ADD);
- using Window = SmallVector<size_t, 2>;
- SymbolVar add_pooling(
- SymbolVar f, Window window, Stride stride = {1, 1},
- Padding padding = {0, 0},
- opr::Pooling::Param::Mode mode = opr::Pooling::Param::Mode::MAX);
- SymbolVar add_type_cvt(SymbolVar f, DType out_dtype = dtype::Float32());
- SymbolVar add_concat(SymbolVar f, SymbolVar g, int axis = 0);
- SymbolVar add_dimshuffle(SymbolVar f, std::vector<int> pattern);
- SymbolVar add_axisaddremove(SymbolVar f);
- SymbolVar add_subtensor(SymbolVar f);
- SymbolVar add_reshape(SymbolVar f);
- SymbolVar add_broadcast(SymbolVar f);
- SymbolVar add_copy(SymbolVar f);
- };
-
- SymbolVar create_block(
- Network& network, SymbolVar f, size_t stride, size_t num_outputs1,
- bool has_proj = false, DType out_dtype = dtype::Float32());
-
- SymbolVar make_resnet18(
- Network& network, size_t batch = 16, DType out_dtype = dtype::Float32());
-
- SymbolVarArray make_det(
- Network& network, size_t batch = 16, DType out_dtype = dtype::Float32());
-
- SymbolVar bottleneck(
- Network& network, SymbolVar f, size_t input_channels, size_t channels, size_t t,
- size_t stride, DType out_dtype = dtype::Float32());
-
- SymbolVar bottleneck_group(
- Network& network, SymbolVar f, size_t input_channels, size_t channels,
- size_t stages, size_t s, size_t t, DType out_dtype = dtype::Float32());
-
- SymbolVar make_mobilenet_v2(
- Network& network, size_t batch = 1, DType out_dtype = dtype::Float32());
-
- } // namespace mgb
-
- // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
|