|
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- from typing import Iterable
-
- from ... import _internal as mgb
- from ... import functional as F
- from ... import module as Float
- from ...core.tensor import Tensor
- from ...quantization.utils import register_method_to_class
- from ..module import Module
-
-
- class Concat(Module):
- r"""
- A :class:`~.Module` to do quantized concat, inference only.
- """
-
- def __init__(self):
- super().__init__()
- self.scale = 1.0
- self.zero_point = 0.0
- self.output_dtype = mgb.dtype.qint8(self.scale)
-
- def forward(self, inps: Iterable[Tensor], axis: int = 0):
- if self.training:
- raise ValueError("quantized module only support inference.")
- new_inps = (x.astype(self.output_dtype) for x in inps)
- return F.concat(new_inps, axis)
-
-
- @register_method_to_class(Float.Concat)
- def to_quantized(float_module):
- r"""
- Replace :class:`~.module.QATModule`'s ``to_quantized`` method.
- implemented here to avoid circular import.
- """
- qmod = Concat()
- qmod.output_dtype = float_module.act_observer.get_dtype()
- qmod.scale, qmod.zero_point = float_module.act_observer.get_qparams()
- return qmod
|