|
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import collections
- from collections import OrderedDict
- from typing import Dict, List, Optional
-
- import numpy
-
- from ..core import _imperative_rt
- from ..core._imperative_rt import OperatorNode, VarNode
- from ..core.tensor import megbrain_graph as G
- from ..core.tensor.megbrain_graph import set_priority_to_id
- from ..tensor import Tensor
-
- __all__ = [
- "get_dep_vars",
- "get_owner_opr_inputs",
- "get_owner_opr_type",
- "get_opr_type",
- "graph_traversal",
- "get_oprs_seq",
- "replace_vars",
- "replace_oprs",
- "set_priority_to_id",
- "load_and_inference",
- "GraphInference",
- ]
-
-
- def get_dep_vars(var: VarNode, var_type: str = None) -> List[VarNode]:
- """
- Returns :class:`.tensor.core.megbrain_graph.VarNode` of type ``var_type`` that input ``var``
- depands on. If ``var_type`` is None, returns all types.
- """
- outputs = []
- memo = set()
-
- if isinstance(var, VarNode):
- var = [var]
-
- if isinstance(var_type, str):
- var_type = [var_type]
-
- q = list(var)
- while q:
- v = q.pop(0)
- if v in memo:
- continue
- memo.add(v)
- q.extend(get_owner_opr_inputs(v))
- if var_type is not None:
- if get_owner_opr_type(v) in var_type:
- outputs.append(v)
- else:
- outputs.append(v)
-
- return outputs
-
-
- def get_owner_opr_inputs(var: VarNode) -> List[VarNode]:
- """
- Gets the inputs of owner opr of a variable.
- """
- assert isinstance(var, VarNode)
- return var.owner.inputs
-
-
- def get_owner_opr_type(var: VarNode) -> str:
- """
- Gets the type of owner opr of a variable.
-
- """
- assert isinstance(var, VarNode)
- return var.owner.type
-
-
- def get_opr_type(opr: OperatorNode) -> str:
- """
- Gets the type of an opr.
- """
- assert isinstance(opr, OperatorNode)
- return opr.type
-
-
- def graph_traversal(outputs: VarNode):
- """
- Helper function to traverse the computing graph and return enough useful information.
-
- :param outputs: model outputs.
- :return: tuple (map_oprs, map_vars, var2oprs, opr2receivers, indegree2opr, opr2indegree)
- WHERE
- map_oprs is dict from opr_id to actual opr
- map_vars is dict from var_id to actual var
- var2oprs is dict from var to dest oprs along with index
- opr2receivers is dict from current opr to next opr
- indegree2opr is dict from in_degree to opr in computing graph
- opr2indegree is dict from opr in computing graph to in_degree
-
- (indegree2opr, opr2indegree) are only used in topological sort in get_oprs_seq function
- """
- # meta information for comp graph
- map_oprs = collections.defaultdict(set)
- map_vars = collections.defaultdict(set)
-
- var2oprs = collections.defaultdict(list)
- opr2receivers = collections.defaultdict(list)
-
- queue = list(map(lambda x: x.owner, outputs))
- visited = set(map(lambda x: x.id, queue))
-
- # iterate through whole comp_graph, fill in meta information
- indegree2opr = collections.defaultdict(set)
- opr2indegree = {}
-
- idx = 0
- while idx < len(queue):
- cur_opr = queue[idx]
- map_oprs[cur_opr.id] = cur_opr
-
- idx += 1
-
- indegree = 0
- for var_idx, var in enumerate(cur_opr.inputs):
- map_vars[var.id] = var
- var2oprs[var.id].append((cur_opr.id, var_idx))
-
- pre_opr = var.owner
-
- if pre_opr.id not in visited:
- visited.add(pre_opr.id)
- queue.append(pre_opr)
-
- indegree += 1
- opr2receivers[pre_opr.id].append(cur_opr.id)
-
- indegree2opr[indegree].add(cur_opr.id)
- opr2indegree[cur_opr.id] = indegree
-
- return map_oprs, map_vars, var2oprs, opr2receivers, indegree2opr, opr2indegree
-
-
- def get_oprs_seq(outputs: List[VarNode], prune_reshape=False) -> List[OperatorNode]:
- """
- Gets oprs in some topological order for a dumped model.
-
- :param outputs: model outputs.
- :param prune_reshape: whether to prune the useless operators during inference.
- :return: opr list with some correct execution order.
- """
-
- def topological_sort(map_oprs, opr2receivers, indegree2opr, opr2indegree):
- # generate an execution order with topological sort algorithm
- oprs_seq = []
- nr_remain = len(map_oprs)
- while indegree2opr[0]:
- opr_id = indegree2opr[0].pop()
- opr = map_oprs[opr_id]
- nr_remain -= 1
-
- # skip const value generation operator
- if get_opr_type(opr) != "ImmutableTensor":
- oprs_seq.append(opr)
-
- for post_id in opr2receivers[opr_id]:
- indegree = opr2indegree[post_id]
- indegree2opr[indegree].remove(post_id)
-
- indegree -= 1
- indegree2opr[indegree].add(post_id)
- opr2indegree[post_id] = indegree
-
- assert nr_remain == 0, "there are {} remaining nodes; cyclic graph?".format(
- nr_remain
- )
- return oprs_seq
-
- # reshape op definition: reshape(input_tensor, dest_shape) -> output_tensor
- # when inferencing, shape of output_tensor is already known, so one can prune some operators related to dest_shape in the loaded graph
- def prune_reshape_oprs(outputs, oprs_seq, var2oprs):
- def iterative_pruning(cur_opr, post_opr, marked_opr_ids, visited):
- useless = True
- for oup in cur_opr.outputs:
- if "workspace" not in oup.name:
- var_idx = post_opr.inputs.index(oup)
- var2oprs[oup.id].remove((post_opr.id, var_idx))
- useless = useless and (len(var2oprs[oup.id]) == 0)
-
- if useless:
- marked_opr_ids.append(cur_opr.id)
-
- for opr in set([var.owner for var in cur_opr.inputs]):
- if (opr.id, cur_opr.id) not in visited:
- visited.add((opr.id, cur_opr.id))
- iterative_pruning(opr, cur_opr, marked_opr_ids, visited)
-
- reshape_vars = get_dep_vars(outputs, "Reshape")
- reshape_oprs = [var.owner for var in reshape_vars]
-
- marked_opr_ids = []
- visited = set()
- for reshape_opr in reshape_oprs:
- iterative_pruning(
- reshape_opr.inputs[1].owner, reshape_opr, marked_opr_ids, visited
- )
-
- # filter out all marked oprs
- return list(filter(lambda x: x.id not in marked_opr_ids, oprs_seq))
-
- map_oprs, _, var2oprs, opr2receivers, indegree2opr, opr2indegree = graph_traversal(
- outputs
- )
- oprs_seq = topological_sort(map_oprs, opr2receivers, indegree2opr, opr2indegree)
- if prune_reshape is True:
- oprs_seq = prune_reshape_oprs(outputs, oprs_seq, var2oprs.copy())
- return oprs_seq
-
-
- def replace_vars(dst: VarNode, varmap: Dict[VarNode, VarNode]) -> List[VarNode]:
- """
- Replaces vars in the graph.
-
- :param dst: target vars representing the graph.
- :param varmap: the map that specifies how to replace the vars.
-
- :return: new vars that correspond to ``dst`` with all the dependencies
- replaced.
- """
- dst_vec = []
- repl_src_vec = []
- repl_dst_vec = []
- for i in dst:
- assert isinstance(i, VarNode)
- dst_vec.append(i)
-
- for i, j in getattr(varmap, "items", lambda: varmap)():
- assert isinstance(i, VarNode)
- assert isinstance(j, VarNode)
- repl_src_vec.append(i)
- repl_dst_vec.append(j)
-
- return _imperative_rt.graph._replace_vars(repl_src_vec, repl_dst_vec, dst_vec)
-
-
- def replace_oprs(
- dst: List[VarNode], oprmap: Dict[OperatorNode, OperatorNode]
- ) -> List[VarNode]:
- """
- Replaces operators in the graph.
-
- :param dst: target vars representing the graph.
- :param oprmap: the map that specifies how to replace the operators.
-
- :return: new vars that correspond to ``dst`` with all the dependencies
- replaced.
- """
- dst_vec = []
- repl_src_vec = []
- repl_dst_vec = []
- for i in dst:
- assert isinstance(i, VarNode)
- dst_vec.append(i)
-
- for i, j in getattr(oprmap, "items", lambda: oprmap)():
- assert isinstance(i, OperatorNode)
- assert isinstance(j, OperatorNode)
- repl_src_vec.append(i)
- repl_dst_vec.append(j)
-
- return _imperative_rt.graph._replace_oprs(repl_src_vec, repl_dst_vec, dst_vec)
-
-
- def load_and_inference(file, inp_data_list: List[numpy.ndarray]) -> List[numpy.ndarray]:
- """
- Loads a serialized computing graph and run inference with input data.
-
- :param file: path or handle of the input file.
- :param inp_data_list: list of input data.
- :return: list of inference results.
-
- """
- graph = GraphInference(file)
- result = graph.run(*inp_data_list)
- out_data_list = list(result.values())
- return out_data_list
-
-
- class GraphInference:
- """
- Loads a serialized computing graph as a GraphInference object which can be used to execute the computing graph.
- The `GraphInference.run()` accepts a list `inp_args` or a dict `inp_dict` {input_name: input_value} as input and returns a dict {output_name: output_value}.
-
- :param file: could be file object or filename.
- :param outputs: only compile the subgraph with outputs as its endpoints.
- """
-
- def __init__(self, file, outputs: Optional[List[str]] = None):
- *_, output_nodes = G.load_graph(file)
- if outputs is not None:
- output_name = outputs.copy()
- all_vars = get_dep_vars(output_nodes) + output_nodes
- new_outputs = {}
- for i in all_vars:
- if i.name in output_name:
- new_outputs[i.name] = i
- output_name.remove(i.name)
- assert (
- len(output_name) == 0
- ), "Can not find varnode {} in this model".format(output_name)
- output_nodes = [new_outputs[i] for i in outputs]
- inputs = get_dep_vars(output_nodes, "Host2DeviceCopy")
- self._inp_dict = OrderedDict()
- replace_dict = {}
- for i in inputs:
- inp_node = G.InputNode(
- device="xpux", dtype=inputs[0].dtype, graph=inputs[0].graph
- )
- self._inp_dict[i.name] = inp_node
- replace_dict[i] = inp_node.outputs[0]
- new_output_nodes = replace_vars(output_nodes, replace_dict)
- for old, new in zip(output_nodes, new_output_nodes):
- new.name = old.name
- self._out_dict = OrderedDict(
- [(i.name, G.OutputNode(i)) for i in new_output_nodes]
- )
- new_out_list = [i.outputs[0] for i in self._out_dict.values()]
- cg = new_out_list[0].graph
- self._func = cg.compile(new_out_list)
-
- def run(
- self,
- *inp_args: numpy.ndarray,
- inp_dict: Optional[Dict[str, numpy.ndarray]] = None
- ):
- assert len(inp_args) <= len(
- self._inp_dict
- ), "This model expects {} inputs".format(len(self._inp_dict))
- inputs = {}
- inp_keys = list(self._inp_dict.keys())
- for ind, data in enumerate(inp_args):
- inputs[inp_keys[ind]] = data
- if inp_dict is not None:
- inputs.update(inp_dict)
- assert (
- inputs.keys() == self._inp_dict.keys()
- ), "This model expects inputs {}, but gets inputs {}".format(
- list(self._inp_dict.keys()), list(inputs.keys())
- )
- for key in self._inp_dict:
- self._inp_dict[key].set_value(Tensor(inputs[key])._dev_tensor())
- self._func.execute()
- result = OrderedDict()
- for key in self._out_dict:
- result[key] = self._out_dict[key].get_value().numpy()
- return result
|