|
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import io
-
- import numpy as np
- import pytest
-
- import megengine
- import megengine.functional as F
- import megengine.module as M
- from megengine import cgtools
- from megengine.core.tensor import megbrain_graph as mgb_graph
- from megengine.core.tensor.raw_tensor import as_raw_tensor
- from megengine.jit import trace
-
-
- def make_dev_tensor(value, dtype=None, device=None):
- return as_raw_tensor(value, dtype=dtype, device=device)._dev_tensor()
-
-
- def test_replace_vars():
- g = mgb_graph.Graph()
- g.options.async_exec_level = 0b100
- device = "xpux"
- dtype = np.float32
- a = mgb_graph.InputNode(device=device, dtype=dtype, graph=g)
- const = g.make_const(1.234)
- a_plus_a = F.add(a.outputs[0], a.outputs[0])
- a_plus_a_mul_const = F.mul(a_plus_a, const)
- rst = F.add(a_plus_a_mul_const, a.outputs[0])
- (new,) = cgtools.replace_vars([rst._node], {const._node: a_plus_a._node})
- out = mgb_graph.OutputNode(mgb_graph.VarNode(new))
- func = g.compile(out.outputs[0])
- func.execute()
- x = make_dev_tensor(5.0, device=device)
- a.set_value(x)
- res = out.get_value().numpy()
- np.testing.assert_equal(res, np.array([105.0]))
-
-
- def test_replace_oprs():
- g = mgb_graph.Graph()
- g.options.async_exec_level = 0b100
- device = "xpux"
- dtype = np.float32
- a = mgb_graph.InputNode(device=device, dtype=dtype, graph=g)
- const = g.make_const(1.25)
- a_plus_a = F.add(a.outputs[0], a.outputs[0])
- old_opr = a_plus_a.op
- a_plus_a_mul_const = F.mul(a_plus_a, const)
- a_mul_a = F.mul(a.outputs[0], a.outputs[0])
- new_opr = a_mul_a.op
- (new,) = cgtools.replace_oprs(
- [a_plus_a_mul_const._node], {old_opr._node: new_opr._node}
- )
- out = mgb_graph.OutputNode(mgb_graph.VarNode(new))
- func = g.compile(out.outputs[0])
- func.execute()
- x = make_dev_tensor(5.0, device=device)
- a.set_value(x)
- res = out.get_value().numpy()
- np.testing.assert_equal(res, np.array([5.0 * 5.0 * 1.25]))
-
-
- def test_graph_traversal():
- net = M.Conv2d(3, 32, 3)
-
- @trace(symbolic=True, capture_as_const=True)
- def fun(data):
- x = net(data)
- return x
-
- data = np.random.random([1, 3, 224, 224]).astype(np.float32)
- for _ in range(3):
- fun(megengine.tensor(data))
-
- file = io.BytesIO()
- fun.dump(file, optimize_for_inference=False)
- file.seek(0)
- cg, _, outputs = mgb_graph.load_graph(file)
-
- _, map_vars, var2oprs, *_ = cgtools.graph_traversal(outputs)
- input_var = map_vars[1]
- _, var_idx = var2oprs[input_var.id][0]
-
- assert var_idx == 0
|