|
- /**
- * \file dnn/src/arm_common/conv_bias/fp32/algos.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
-
- #include "src/arm_common/conv_bias/fp32/algos.h"
- #include "src/arm_common/conv_bias/direct/multi_thread_common.h"
- #include "src/arm_common/conv_bias/fp32/direct.h"
- #include "src/arm_common/conv_bias/fp32/do_conv_stride1.h"
- #include "src/arm_common/conv_bias/fp32/do_conv_stride2.h"
- #include "src/arm_common/conv_bias/fp32/strategy.h"
- #include "src/arm_common/conv_bias/img2col_helper.h"
- #include "src/arm_common/conv_bias/postprocess_helper.h"
- #include "src/common/opr_delegate.h"
- #include "src/fallback/conv_bias/common.h"
-
- #include "midout.h"
-
- MIDOUT_DECL(megdnn_arm_common_winograd_fp32)
-
- using namespace megdnn;
- using namespace arm_common;
-
- /* ======================= AlgoFP32WinogradF23_4x4 ======================== */
-
- bool ConvBiasImpl::AlgoFP32WinogradF23_4x4::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy /*algo_selection_strategy*/) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 0, 0) {
- if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0)
- return false;
- using Strategy = winograd::winograd_2x3_4x4_f;
- using PackMode = fallback::MatrixMulImpl::AlgoBase::PackMode;
- Strategy strategy(param.src_type, param.filter_type, param.dst_type);
- auto&& matmul_param =
- megdnn::winograd::ConvBias<Strategy,
- param::MatrixMul::Format::MK4>(
- strategy, m_tile_size, param)
- .get_matmul_kern_param(param);
- return m_matmul_algo->usable(matmul_param) &&
- m_matmul_algo->packmode() == PackMode::NO_PACK &&
- (param.filter_meta.format == param::ConvBias::Format::NCHW ||
- (param.filter_meta.format ==
- param::ConvBias::Format::NCHW_WINOGRAD &&
- param.output_block_size == 2 &&
- param.winograd_matmul_format ==
- param::MatrixMul::Format::MK4)) &&
- !param.filter_meta.should_flip &&
- (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
- param.filter_meta.spatial[0] == 3) &&
- (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
- param.filter_meta.stride[0] == 1) &&
- (param.filter_meta.dilation[0] ==
- param.filter_meta.dilation[1] &&
- param.filter_meta.dilation[0] == 1) &&
- param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
- param.src_type.enumv() == DTypeEnum::Float32;
- }
- MIDOUT_END();
- return false;
- }
-
- MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF23_4x4,
- winograd::winograd_2x3_4x4_f,
- megdnn_arm_common_winograd_fp32,
- param::MatrixMul::Format::MK4);
-
- /* ======================= AlgoFP32WinogradF63 ======================== */
-
- bool ConvBiasImpl::AlgoFP32WinogradF63::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy /*algo_selection_strategy*/) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 1, 0) {
- using Strategy = winograd::winograd_6x3_1x1_f;
- Strategy strategy(param.src_type, param.filter_type, param.dst_type);
- auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>(
- strategy, m_tile_size, param)
- .get_matmul_kern_param(param);
- return m_matmul_algo->usable(matmul_param) &&
- (param.filter_meta.format == param::ConvBias::Format::NCHW ||
- (param.filter_meta.format ==
- param::ConvBias::Format::NCHW_WINOGRAD &&
- param.output_block_size == 6 &&
- param.winograd_matmul_format ==
- param::MatrixMul::Format::DEFAULT)) &&
- !param.filter_meta.should_flip &&
- (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
- param.filter_meta.spatial[0] == 3) &&
- (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
- param.filter_meta.stride[0] == 1) &&
- (param.filter_meta.dilation[0] ==
- param.filter_meta.dilation[1] &&
- param.filter_meta.dilation[0] == 1) &&
- param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
- param.src_type.enumv() == DTypeEnum::Float32;
- }
- MIDOUT_END();
- return false;
- }
-
- MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63,
- winograd::winograd_6x3_1x1_f,
- megdnn_arm_common_winograd_fp32,
- param::MatrixMul::Format::DEFAULT);
-
- /* ======================= AlgoFP32WinogradF54 ======================== */
-
- bool ConvBiasImpl::AlgoFP32WinogradF54::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy /*algo_selection_strategy*/) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 2, 0) {
- using Strategy = winograd::winograd_5x4_1x1_f;
- Strategy strategy(param.src_type, param.filter_type, param.dst_type);
- auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>(
- strategy, m_tile_size, param)
- .get_matmul_kern_param(param);
- return m_matmul_algo->usable(matmul_param) &&
- (param.filter_meta.format == param::ConvBias::Format::NCHW ||
- (param.filter_meta.format ==
- param::ConvBias::Format::NCHW_WINOGRAD &&
- param.output_block_size == 5 &&
- param.winograd_matmul_format ==
- param::MatrixMul::Format::DEFAULT)) &&
- !param.filter_meta.should_flip &&
- (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
- param.filter_meta.spatial[0] == 4) &&
- (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
- param.filter_meta.stride[0] == 1) &&
- (param.filter_meta.dilation[0] ==
- param.filter_meta.dilation[1] &&
- param.filter_meta.dilation[0] == 1) &&
- param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
- param.src_type.enumv() == DTypeEnum::Float32;
- }
- MIDOUT_END();
- return false;
- }
-
- MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF54,
- winograd::winograd_5x4_1x1_f,
- megdnn_arm_common_winograd_fp32,
- param::MatrixMul::Format::DEFAULT);
-
- /* ======================= AlgoFP32WinogradF45 ======================== */
-
- bool ConvBiasImpl::AlgoFP32WinogradF45::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy /*algo_selection_strategy*/) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 3, 0) {
- using Strategy = winograd::winograd_4x5_1x1_f;
- Strategy strategy(param.src_type, param.filter_type, param.dst_type);
- auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>(
- strategy, m_tile_size, param)
- .get_matmul_kern_param(param);
- return m_matmul_algo->usable(matmul_param) &&
- (param.filter_meta.format == param::ConvBias::Format::NCHW ||
- (param.filter_meta.format ==
- param::ConvBias::Format::NCHW_WINOGRAD &&
- param.output_block_size == 4 &&
- param.winograd_matmul_format ==
- param::MatrixMul::Format::DEFAULT)) &&
- !param.filter_meta.should_flip &&
- (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
- param.filter_meta.spatial[0] == 5) &&
- (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
- param.filter_meta.stride[0] == 1) &&
- (param.filter_meta.dilation[0] ==
- param.filter_meta.dilation[1] &&
- param.filter_meta.dilation[0] == 1) &&
- param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
- param.src_type.enumv() == DTypeEnum::Float32;
- }
- MIDOUT_END();
- return false;
- }
-
- MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF45,
- winograd::winograd_4x5_1x1_f,
- megdnn_arm_common_winograd_fp32,
- param::MatrixMul::Format::DEFAULT);
-
- /* ======================= AlgoFP32WinogradF63_4x4 ======================== */
-
- bool ConvBiasImpl::AlgoFP32WinogradF63_4x4::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy /*algo_selection_strategy*/) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 4, 0) {
- if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0)
- return false;
- using Strategy = winograd::winograd_6x3_4x4_f;
- using PackMode = fallback::MatrixMulImpl::AlgoBase::PackMode;
- Strategy strategy(param.src_type, param.filter_type, param.dst_type);
- auto&& matmul_param =
- megdnn::winograd::ConvBias<Strategy,
- param::MatrixMul::Format::MK4>(
- strategy, m_tile_size, param)
- .get_matmul_kern_param(param);
- return m_matmul_algo->usable(matmul_param) &&
- m_matmul_algo->packmode() == PackMode::NO_PACK &&
- (param.filter_meta.format == param::ConvBias::Format::NCHW ||
- (param.filter_meta.format ==
- param::ConvBias::Format::NCHW_WINOGRAD &&
- param.output_block_size == 6 &&
- param.winograd_matmul_format ==
- param::MatrixMul::Format::MK4)) &&
- !param.filter_meta.should_flip &&
- (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
- param.filter_meta.spatial[0] == 3) &&
- (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
- param.filter_meta.stride[0] == 1) &&
- (param.filter_meta.dilation[0] ==
- param.filter_meta.dilation[1] &&
- param.filter_meta.dilation[0] == 1) &&
- param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
- param.src_type.enumv() == DTypeEnum::Float32 &&
- param.filter_meta.icpg % 4 == 0 &&
- param.filter_meta.ocpg % 4 == 0;
- }
- MIDOUT_END();
- return false;
- }
-
- MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63_4x4,
- winograd::winograd_6x3_4x4_f,
- megdnn_arm_common_winograd_fp32,
- param::MatrixMul::Format::MK4);
-
- /* =================== AlgoFP32WinogradF23_4x4_NCHW44 =================== */
-
- bool ConvBiasImpl::AlgoFP32WinogradF23_4x4_NCHW44::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy /*algo_selection_strategy*/) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32,
- midout_iv("AlgoFP32WinogradF23_4x4_NCHW44"_hash)) {
- if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0)
- return false;
- using Strategy = winograd::winograd_F23_mk4_f_nchw44;
- Strategy strategy(param.src_type, param.filter_type, param.dst_type);
- auto&& matmul_param =
- megdnn::winograd::ConvBias<Strategy,
- param::MatrixMul::Format::MK4>(
- strategy, m_tile_size, param)
- .get_matmul_kern_param(param);
- return m_matmul_algo->usable(matmul_param) &&
- m_matmul_algo->packmode() ==
- fallback::MatrixMulImpl::AlgoBase::PackMode::NO_PACK &&
- (param.filter_meta.format == param::ConvBias::Format::NCHW44 ||
- (param.filter_meta.format ==
- param::ConvBias::Format::NCHW44_WINOGRAD &&
- param.output_block_size == 2 &&
- param.winograd_matmul_format ==
- param::MatrixMul::Format::MK4)) &&
- !param.filter_meta.should_flip &&
- (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
- param.filter_meta.spatial[0] == 3) &&
- (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
- param.filter_meta.stride[0] == 1) &&
- (param.filter_meta.dilation[0] ==
- param.filter_meta.dilation[1] &&
- param.filter_meta.dilation[0] == 1) &&
- param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
- param.src_type.enumv() == DTypeEnum::Float32;
- }
- MIDOUT_END();
- return false;
- }
-
- MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF23_4x4_NCHW44,
- winograd::winograd_F23_mk4_f_nchw44,
- megdnn_arm_common_winograd_fp32,
- param::MatrixMul::Format::MK4);
-
- /* =================== AlgoFP32WinogradF63_4x4_NCHW44 ===================== */
-
- bool ConvBiasImpl::AlgoFP32WinogradF63_4x4_NCHW44::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy /*algo_selection_strategy*/) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32,
- midout_iv("AlgoFP32WinogradF63_4x4_NCHW44"_hash)) {
- if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0)
- return false;
- using Strategy = winograd::winograd_F63_mk4_f_nchw44;
- Strategy strategy(param.src_type, param.filter_type, param.dst_type);
- auto&& matmul_param =
- megdnn::winograd::ConvBias<Strategy,
- param::MatrixMul::Format::MK4>(
- strategy, m_tile_size, param)
- .get_matmul_kern_param(param);
- return m_matmul_algo->usable(matmul_param) &&
- m_matmul_algo->packmode() ==
- fallback::MatrixMulImpl::AlgoBase::PackMode::NO_PACK &&
- (param.filter_meta.format == param::ConvBias::Format::NCHW44 ||
- (param.filter_meta.format ==
- param::ConvBias::Format::NCHW44_WINOGRAD &&
- param.output_block_size == 6 &&
- param.winograd_matmul_format ==
- param::MatrixMul::Format::MK4)) &&
- !param.filter_meta.should_flip &&
- (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
- param.filter_meta.spatial[0] == 3) &&
- (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
- param.filter_meta.stride[0] == 1) &&
- (param.filter_meta.dilation[0] ==
- param.filter_meta.dilation[1] &&
- param.filter_meta.dilation[0] == 1) &&
- param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
- param.src_type.enumv() == DTypeEnum::Float32 &&
- param.filter_meta.icpg % 4 == 0 &&
- param.filter_meta.ocpg % 4 == 0;
- }
- MIDOUT_END();
- return false;
- }
-
- MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63_4x4_NCHW44,
- winograd::winograd_F63_mk4_f_nchw44,
- megdnn_arm_common_winograd_fp32,
- param::MatrixMul::Format::MK4);
-
- /* ===================== direct algo ===================== */
- MIDOUT_DECL(megdnn_arm_common_conv_bias_f32_kimpl);
-
- bool ConvBiasImpl::AlgoF32Direct::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy algo_selection_strategy) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 0, 0) {
- auto&& fm = param.filter_meta;
- auto FH = fm.spatial[0];
- auto SH = fm.stride[0], SW = fm.stride[1];
- // the condition ``param.isz[0]*param.isz[1] >= 4'' and
- // ``param.osz[0]*param.osz[1] >= 4'' comes from the fact that the
- // kernel may have access to up to 4 floats after the end of the memory
- // chunk.
- bool aviliable = fm.format == param::ConvBias::Format::NCHW &&
- param.src_type.enumv() == DTypeEnum::Float32 &&
- param.filter_type.enumv() == DTypeEnum::Float32 &&
- param.dst_type.enumv() == DTypeEnum::Float32 &&
- fm.spatial_ndim == 2 && fm.dilation[0] == 1 &&
- fm.dilation[1] == 1 &&
- param.isz[0] * param.isz[1] >= 4 &&
- param.osz[0] * param.osz[1] >= 4 && FH <= 7 &&
- SH == 1 && SW == 1;
- if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) {
- bool large_group = param.filter_meta.group >= param.nr_threads;
- aviliable &= (large_group == m_large_group);
- }
- return aviliable;
- }
- MIDOUT_END();
- return false;
- }
- size_t ConvBiasImpl::AlgoF32Direct::get_workspace(
- const NCBKernSizeParam& param) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 0, 1) {
- auto wbundle = MultithreadDirectConvCommon<float, float>::get_bundle(
- param, m_large_group);
- return wbundle.total_size_in_bytes();
- }
- MIDOUT_END();
- return 0;
- }
- SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF32Direct::get_kimpls(
- const NCBKernSizeParam& param) const {
- auto fm = param.filter_meta;
- size_t N = param.n;
- size_t IC = param.filter_meta.icpg;
- size_t OC = param.filter_meta.ocpg;
- size_t group = fm.group;
- WorkspaceBundle bundle =
- MultithreadDirectConvCommon<float, float>::get_bundle(
- param, m_large_group);
- SmallVector<NCBKern> ret_kerns;
- //! When group >= nr_threads, treat it as large_group, each thread process
- //! one group for better performance
- if (m_large_group) {
- //! Channel wise conv and big groups
- auto exec_one_group = [bundle](const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) mutable {
- auto fm = kern_param.filter_meta;
- size_t IC = fm.icpg;
- size_t OC = fm.ocpg;
- bundle.set(kern_param.workspace_ptr);
- if (fm.should_flip) {
- for (size_t oc = 0; oc < OC; oc++) {
- MultithreadDirectConvCommon<float, float>::weight_flip_kern(
- bundle, kern_param, ncb_index,
- {ncb_index.thread_id, 0, oc});
- }
- }
- for (size_t ic = 0; ic < IC; ic++) {
- MultithreadDirectConvCommon<float, float>::copy_padding_kern(
- bundle, kern_param, ncb_index,
- {ncb_index.thread_id, 0, ic});
- }
- for (size_t oc = 0; oc < OC; oc++) {
- MultithreadDirectConvCommon<float, float>::do_conv_kern(
- bundle, kern_param, ncb_index,
- fp32::conv_bias::kern_direct,
- {ncb_index.thread_id, 0, oc});
- }
- };
- ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
- } else {
- if (fm.should_flip) {
- auto weight_flip = [bundle](const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) mutable {
- bundle.set(kern_param.workspace_ptr);
- MultithreadDirectConvCommon<float, float>::weight_flip_kern(
- bundle, kern_param, ncb_index, ncb_index.ndrange_id);
- };
- ret_kerns.push_back({weight_flip, {group, 1_z, OC}});
- }
- auto copy_padding = [bundle](const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) mutable {
- bundle.set(kern_param.workspace_ptr);
- MultithreadDirectConvCommon<float, float>::copy_padding_kern(
- bundle, kern_param, ncb_index, ncb_index.ndrange_id);
- };
- ret_kerns.push_back({copy_padding, {group, N, IC}});
- auto do_conv = [bundle](const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) mutable {
- bundle.set(kern_param.workspace_ptr);
- MultithreadDirectConvCommon<float, float>::do_conv_kern(
- bundle, kern_param, ncb_index, fp32::conv_bias::kern_direct,
- ncb_index.ndrange_id);
- };
- ret_kerns.push_back({do_conv, {group, N, OC}});
- }
- return ret_kerns;
- }
-
- SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF32Direct::dispatch_kerns(
- const NCBKernSizeParam& param) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 0, 1) {
- return get_kimpls(param);
- }
- MIDOUT_END();
- return {};
- }
- /* ===================== stride-1 algo ===================== */
- bool ConvBiasImpl::AlgoF32DirectStride1::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy algo_selection_strategy) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 1, 1) {
- auto&& fm = param.filter_meta;
- auto FH = fm.spatial[0];
- bool aviliable =
- param.filter_meta.format == param::ConvBias::Format::NCHW &&
- param.src_type.enumv() == DTypeEnum::Float32 &&
- param.filter_type.enumv() == DTypeEnum::Float32 &&
- param.dst_type.enumv() == DTypeEnum::Float32 &&
- !fm.should_flip && fm.spatial_ndim == 2 &&
- fm.dilation[0] == 1 && fm.dilation[1] == 1 &&
- fm.stride[0] == 1 && fm.stride[1] == 1 && FH == fm.spatial[1] &&
- (FH == 2 || FH == 3 || FH == 5 || FH == 7);
- if (algo_selection_strategy ==
- ConvBiasImpl::AlgoSelectionStrategy::HEURISTIC) {
- bool large_group = param.filter_meta.group >= param.nr_threads;
- aviliable &= (large_group == m_large_group);
- }
- return aviliable;
- }
- MIDOUT_END();
- return false;
- }
-
- size_t ConvBiasImpl::AlgoF32DirectStride1::get_workspace(
- const NCBKernSizeParam& param) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 1, 1) {
- auto bundle =
- MultithreadDirectConvCommon<float, float>::get_bundle_stride(
- param, m_large_group);
- return bundle.total_size_in_bytes();
- }
- MIDOUT_END();
- return 0;
- }
-
- SmallVector<ConvBiasImpl::NCBKern>
- ConvBiasImpl::AlgoF32DirectStride1::get_kimpls(
- const NCBKernSizeParam& param) const {
- auto fm = param.filter_meta;
- auto FH = fm.spatial[0];
- size_t N = param.n;
- size_t IC = param.filter_meta.icpg;
- size_t OC = param.filter_meta.ocpg;
- size_t group = fm.group;
- using Func = std::function<void(const float*, const float*, float*, size_t,
- size_t, size_t, size_t, size_t)>;
- Func conv_kern_function = nullptr;
-
- #define SWITCH_KERN_STR1() \
- switch (FH) { \
- case 2: \
- conv_kern_function = fp32::conv_stride1::do_conv_2x2_stride1; \
- break; \
- case 3: \
- conv_kern_function = fp32::conv_stride1::do_conv_3x3_stride1; \
- break; \
- case 5: \
- conv_kern_function = fp32::conv_stride1::do_conv_5x5_stride1; \
- break; \
- case 7: \
- conv_kern_function = fp32::conv_stride1::do_conv_7x7_stride1; \
- break; \
- }
- SWITCH_KERN_STR1();
-
- WorkspaceBundle bundle =
- MultithreadDirectConvCommon<float, float>::get_bundle_stride(
- param, m_large_group);
- SmallVector<NCBKern> ret_kerns;
- //! When group >= nr_threads, treat it as large_group, each thread process
- //! one group for better performance
- if (m_large_group) {
- //! Channel wise conv and big groups
- auto exec_one_group = [bundle, conv_kern_function](
- const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) mutable {
- auto fm = kern_param.filter_meta;
- size_t IC = fm.icpg;
- size_t OC = fm.ocpg;
- bundle.set(kern_param.workspace_ptr);
- for (size_t ic = 0; ic < IC; ic++) {
- MultithreadDirectConvCommon<float, float>::
- copy_padding_kern_stride(bundle, kern_param, ncb_index,
- {ncb_index.thread_id, 0, ic});
- }
- for (size_t oc = 0; oc < OC; oc++) {
- MultithreadDirectConvCommon<float, float>::do_conv_kern_stride(
- bundle, kern_param, ncb_index, conv_kern_function,
- {ncb_index.thread_id, 0, oc});
- }
- };
- ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
- } else {
- auto copy_padding = [bundle](const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) mutable {
- bundle.set(kern_param.workspace_ptr);
- MultithreadDirectConvCommon<float, float>::copy_padding_kern_stride(
- bundle, kern_param, ncb_index, ncb_index.ndrange_id);
- };
- ret_kerns.push_back({copy_padding, {group, N, IC}});
- auto do_conv = [bundle, conv_kern_function](
- const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) mutable {
- bundle.set(kern_param.workspace_ptr);
- MultithreadDirectConvCommon<float, float>::do_conv_kern_stride(
- bundle, kern_param, ncb_index, conv_kern_function,
- ncb_index.ndrange_id);
- };
- ret_kerns.push_back({do_conv, {group, N, OC}});
- }
- return ret_kerns;
- }
-
- SmallVector<ConvBiasImpl::NCBKern>
- ConvBiasImpl::AlgoF32DirectStride1::dispatch_kerns(
- const NCBKernSizeParam& param) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 1, 2) {
- return get_kimpls(param);
- }
- MIDOUT_END();
- return {};
- }
-
- /* ===================== stride-2 algo ===================== */
-
- bool ConvBiasImpl::AlgoF32DirectStride2::usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy algo_selection_strategy) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 2, 0) {
- auto&& fm = param.filter_meta;
- auto FH = fm.spatial[0];
- bool aviliable =
- param.filter_meta.format == param::ConvBias::Format::NCHW &&
- param.src_type.enumv() == DTypeEnum::Float32 &&
- param.filter_type.enumv() == DTypeEnum::Float32 &&
- param.dst_type.enumv() == DTypeEnum::Float32 &&
- !fm.should_flip && fm.spatial_ndim == 2 &&
- fm.dilation[0] == 1 && fm.dilation[1] == 1 &&
- fm.stride[0] == 2 && fm.stride[1] == 2 && FH == fm.spatial[1] &&
- (FH == 2 || FH == 3 || FH == 5 || FH == 7);
- if (algo_selection_strategy ==
- ConvBiasImpl::AlgoSelectionStrategy::HEURISTIC) {
- bool large_group = param.filter_meta.group >= param.nr_threads;
- aviliable &= (large_group == m_large_group);
- }
- return aviliable;
- }
- MIDOUT_END();
- return false;
- }
- size_t ConvBiasImpl::AlgoF32DirectStride2::get_workspace(
- const NCBKernSizeParam& param) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 2, 1) {
- auto bundle =
- MultithreadDirectConvCommon<float, float>::get_bundle_stride(
- param, m_large_group);
- return bundle.total_size_in_bytes();
- }
- MIDOUT_END();
- return 0;
- }
- SmallVector<ConvBiasImpl::NCBKern>
- ConvBiasImpl::AlgoF32DirectStride2::get_kimpls(
- const NCBKernSizeParam& param) const {
- auto fm = param.filter_meta;
- auto FH = fm.spatial[0];
- size_t N = param.n;
- size_t IC = param.filter_meta.icpg;
- size_t OC = param.filter_meta.ocpg;
- size_t group = fm.group;
- using Func = std::function<void(const float*, const float*, float*, size_t,
- size_t, size_t, size_t, size_t)>;
- Func conv_kern_function = nullptr;
-
- #define SWITCH_KERN_STR2() \
- switch (FH) { \
- case 2: \
- conv_kern_function = fp32::conv_stride2::do_conv_2x2_stride2; \
- break; \
- case 3: \
- conv_kern_function = fp32::conv_stride2::do_conv_3x3_stride2; \
- break; \
- case 5: \
- conv_kern_function = fp32::conv_stride2::do_conv_5x5_stride2; \
- break; \
- case 7: \
- conv_kern_function = fp32::conv_stride2::do_conv_7x7_stride2; \
- break; \
- }
- SWITCH_KERN_STR2();
-
- WorkspaceBundle bundle =
- MultithreadDirectConvCommon<float, float>::get_bundle_stride(
- param, m_large_group);
- SmallVector<NCBKern> ret_kerns;
- //! When group >= nr_threads, treat it as large_group, each thread process
- //! one group for better performance
- if (m_large_group) {
- //! Channel wise conv and big groups
- auto exec_one_group = [bundle, conv_kern_function](
- const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) mutable {
- auto fm = kern_param.filter_meta;
- size_t IC = fm.icpg;
- size_t OC = fm.ocpg;
- bundle.set(kern_param.workspace_ptr);
- for (size_t ic = 0; ic < IC; ic++) {
- MultithreadDirectConvCommon<float, float>::
- copy_padding_kern_stride(bundle, kern_param, ncb_index,
- {ncb_index.thread_id, 0, ic});
- }
- for (size_t oc = 0; oc < OC; oc++) {
- MultithreadDirectConvCommon<float, float>::do_conv_kern_stride(
- bundle, kern_param, ncb_index, conv_kern_function,
- {ncb_index.thread_id, 0, oc});
- }
- };
- ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
- } else {
- auto copy_padding = [bundle](const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) mutable {
- bundle.set(kern_param.workspace_ptr);
- MultithreadDirectConvCommon<float, float>::copy_padding_kern_stride(
- bundle, kern_param, ncb_index, ncb_index.ndrange_id);
- };
- ret_kerns.push_back({copy_padding, {group, N, IC}});
- auto do_conv = [bundle, conv_kern_function](
- const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) mutable {
- bundle.set(kern_param.workspace_ptr);
- MultithreadDirectConvCommon<float, float>::do_conv_kern_stride(
- bundle, kern_param, ncb_index, conv_kern_function,
- ncb_index.ndrange_id);
- };
- ret_kerns.push_back({do_conv, {group, N, OC}});
- }
- return ret_kerns;
- }
-
- SmallVector<ConvBiasImpl::NCBKern>
- ConvBiasImpl::AlgoF32DirectStride2::dispatch_kerns(
- const NCBKernSizeParam& param) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 2, 2) {
- return get_kimpls(param);
- }
- MIDOUT_END();
- return {};
- }
- // vim: syntax=cpp.doxygen
|