|
- /**
- * \file dnn/test/cuda/elemwise.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "test/common/elemwise.h"
- #include "test/cuda/fixture.h"
- #include "megdnn/oprs.h"
- #include "test/common/tensor.h"
- #include "test/common/rng.h"
- #include "./utils.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
-
- #include <cudnn.h>
- #include <cuda_profiler_api.h>
-
- using namespace megdnn;
- using namespace test;
-
- #define cudnn_check(e) megdnn_assert((e) == CUDNN_STATUS_SUCCESS)
- namespace {
- __attribute__((unused))
- cudnnTensorDescriptor_t make_cudnn_tensor_desc(const TensorLayout &ly) {
- megdnn_assert(ly.ndim && ly.ndim <= 4 && ly.is_contiguous());
- int dim[4] = {1, 1, 1, 1}, stride[4] = {1, 1, 1, 1};
- for (size_t i = 0; i < ly.ndim; ++ i) {
- dim[i] = ly.shape[i];
- stride[i] = ly.stride[i];
- }
- cudnnTensorDescriptor_t ret;
- cudnn_check(cudnnCreateTensorDescriptor(&ret));
- // cudnn requires tensors to be at-least 4D
- cudnn_check(cudnnSetTensor4dDescriptorEx(ret,
- CUDNN_DATA_FLOAT,
- dim[0], dim[1], dim[2], dim[3],
- stride[0], stride[1], stride[2], stride[3]));
-
- return ret;
- }
-
- void run_tensor_add(
- Handle *handle_cuda,
- const TensorND &a, const TensorND &b,
- const TensorND &c) {
- #if 1
- cudnnHandle_t cudnn_handle;
- cudnn_check(cudnnCreate(&cudnn_handle));
- cuda_check(cudaDeviceSynchronize());
- cuda_check(cudaMemcpy(c.raw_ptr, a.raw_ptr, a.layout.span().dist_byte(),
- cudaMemcpyDeviceToDevice));
-
- auto bdesc = make_cudnn_tensor_desc(b.layout),
- cdesc = make_cudnn_tensor_desc(c.layout);
-
- float alpha = 1, beta = 1;
- cudaProfilerStart();
- cudnn_check(cudnnAddTensor(cudnn_handle,
- &alpha, bdesc, b.raw_ptr,
- &beta, cdesc, c.raw_ptr));
- cudaProfilerStop();
-
- cudnn_check(cudnnDestroyTensorDescriptor(cdesc));
- cudnn_check(cudnnDestroyTensorDescriptor(bdesc));
- cudnn_check(cudnnDestroy(cudnn_handle));
-
- cuda_check(cudaMemset(c.raw_ptr, 0, c.layout.span().dist_byte()));
- cuda_check(cudaDeviceSynchronize());
- #endif
-
- auto opr = handle_cuda->create_operator<ElemwiseForward>();
- opr->param().mode = ElemwiseForward::Mode::ADD;
- cudaProfilerStart();
- opr->exec({a, b}, c);
- cudaProfilerStop();
- }
-
- } // anonymous namespace
-
- template<typename tag>
- class CUDA_ELEMWISE: public CUDA {
- };
- TYPED_TEST_CASE(CUDA_ELEMWISE, elemwise::test_types);
- TYPED_TEST(CUDA_ELEMWISE, run) {
- elemwise::run_test<TypeParam>(this->handle_cuda());
- }
-
- TEST_F(CUDA, ELEMWISE_IBYTE) {
- Checker<ElemwiseForward> checker(handle_cuda());
- using Mode = ElemwiseForward::Param::Mode;
- UniformIntRNG i_rng{-128, 127};
- UniformIntRNG ui_rng{0, 255};
- checker.set_rng(0, &i_rng);
- auto run_unary = [&](size_t N, Mode mode, DType dtype) {
- checker.set_param(mode).set_dtype(0, dtype);
- checker.execs({{N}, {}});
- };
- #define RUN_UNARY_IBYTE(_dt) \
- run_unary(100, Mode::RELU, _dt); \
- run_unary(100, Mode::ABS, _dt);
- RUN_UNARY_IBYTE(dtype::Int8());
- checker.set_rng(0, &i_rng);
- RUN_UNARY_IBYTE(dtype::Uint8());
- #undef RUN_UNARY_IBYTE
- auto run_binary = [&](size_t N, size_t C, size_t H, size_t W, Mode mode,
- DType dtype) {
- checker.set_param(mode).set_dtype(0, dtype).set_dtype(1, dtype);
- checker.execs({{5}, {5}, {}});
- checker.execs({{4}, {4}, {}});
- checker.execs({{4}, {1}, {}});
- checker.execs({{N, C / 4, H, W, 4}, {N, C / 4, H, W, 4}, {}});
- checker.execs({{N, C / 4, H, W, 4}, {1, C / 4, 1, 1, 4}, {}});
- checker.execs({{N, C / 32, H, W, 32}, {N, C / 32, H, W, 32}, {}});
- checker.execs({{N, C / 32, H, W, 32}, {1, C / 32, 1, 1, 32}, {}});
- checker.execs({{3, 5, 7}, {3, 5, 7}, {}});
- checker.execs({{3, 5, 7}, {3, 5, 1}, {}});
- checker.execs({{3, 5, 1}, {3, 5, 7}, {}});
- checker.execs({{1}, {3, 5, 7}, {}});
- checker.execs({{3, 5, 7}, {1}, {}});
- };
- #define RUN_BINARY_IBYTE(_dt) \
- run_binary(4, 32, 10, 10, Mode::ADD, _dt); \
- run_binary(4, 32, 10, 10, Mode::MUL, _dt); \
- run_binary(4, 32, 10, 10, Mode::MAX, _dt); \
- run_binary(4, 32, 10, 10, Mode::MIN, _dt); \
- run_binary(4, 32, 10, 10, Mode::SUB, _dt);
- checker.set_rng(0, &i_rng).set_rng(1, &i_rng);
- RUN_BINARY_IBYTE(dtype::Int8());
- checker.set_rng(0, &ui_rng).set_rng(1, &ui_rng);
- RUN_BINARY_IBYTE(dtype::Uint8());
- #undef RUN_BINARY_IBYTE
- auto run_ternary = [&](size_t N, size_t C, size_t H, size_t W, Mode mode,
- DType dtype) {
- checker.set_param(mode)
- .set_dtype(0, dtype)
- .set_dtype(1, dtype)
- .set_dtype(2, dtype);
- checker.execs({{5}, {5}, {5}, {}});
- checker.execs({{4}, {4}, {1}, {}});
- checker.execs({{N, C / 4, H, W, 4},
- {N, C / 4, H, W, 4},
- {N, C / 4, H, W, 4},
- {}});
- checker.execs({{N, C / 4, H, W, 4},
- {1, C / 4, 1, 1, 4},
- {1, C / 4, 1, 1, 4},
- {}});
- checker.execs({{N, C / 32, H, W, 32},
- {N, C / 32, H, W, 32},
- {N, C / 32, H, W, 32},
- {}});
- checker.execs({{N, C / 32, H, W, 32},
- {1, C / 32, 1, 1, 32},
- {1, C / 32, 1, 1, 32},
- {}});
- checker.execs({{1}, {3, 5, 7}, {3, 5, 7}, {}});
- checker.execs({{3, 5, 7}, {3, 5, 1}, {3, 5, 1}, {}});
- checker.execs({{3, 5, 1}, {3, 5, 7}, {3, 5, 1}, {}});
- checker.execs({{1}, {3, 5, 7}, {1}, {}});
- checker.execs({{3, 5, 7}, {1}, {3, 5, 7}, {}});
- };
- #define RUN_TERNARY_IBYTE(_dt) \
- run_ternary(4, 32, 10, 10, Mode::FUSE_MUL_ADD3, _dt);
- checker.set_rng(0, &i_rng).set_rng(1, &i_rng);
- RUN_TERNARY_IBYTE(dtype::Int8());
- checker.set_rng(0, &ui_rng).set_rng(1, &ui_rng);
- RUN_TERNARY_IBYTE(dtype::Uint8());
- #undef RUN_TERNARY_IBYTE
- }
-
- // from common/elemwise.cpp
- TEST_F(CUDA, ELEMWISE_BFLOAT16) {
- using Mode = ElemwiseForward::Param::Mode;
- Checker<ElemwiseForward> checker(handle_cuda());
-
- // unary
- #define UNARY_TEST_CASE(_optr) \
- checker.set_param(Mode::_optr).execs({{1, 127}, {}}); \
- checker.set_param(Mode::_optr).execs({{1, 7}, {}});
-
- #define BUILD_UNARY_TEST_CASE_FLOAT \
- UNARY_TEST_CASE(ABS) \
- UNARY_TEST_CASE(LOG) \
- UNARY_TEST_CASE(COS) \
- UNARY_TEST_CASE(SIN) \
- UNARY_TEST_CASE(FLOOR) \
- UNARY_TEST_CASE(CEIL) \
- UNARY_TEST_CASE(SIGMOID) \
- UNARY_TEST_CASE(EXP) \
- UNARY_TEST_CASE(TANH) \
- UNARY_TEST_CASE(FAST_TANH) \
- UNARY_TEST_CASE(RELU) \
- UNARY_TEST_CASE(ROUND)
-
- checker.set_dtype(0, dtype::BFloat16());
- checker.set_dtype(1, dtype::BFloat16());
- UniformFloatRNG rng0(1e-2, 6e1);
- checker.set_rng(0, &rng0);
- checker.set_epsilon(1e-2);
- BUILD_UNARY_TEST_CASE_FLOAT
-
- #undef UNARY_TEST_CASE
- #undef BUILD_UNARY_TEST_CASE_FLOAT
-
- // binary
- #define BINARY_COMPLATE_TEST_CASE(_optr) \
- checker.set_param(Mode::_optr).execs({{3, 4, 7}, {3, 4, 7}, {}}); \
- checker.set_param(Mode::_optr).execs({{3, 4, 5, 7}, {1, 4, 1, 1}, {}}); \
- checker.set_param(Mode::_optr).execs({{1, 4, 1, 1}, {3, 4, 5, 7}, {}}); \
- checker.set_param(Mode::_optr).execs({{3, 4, 7}, {1, 4, 1}, {}}); \
- checker.set_param(Mode::_optr).execs({{1, 4, 1}, {3, 4, 7}, {}}); \
- checker.set_param(Mode::_optr).execs({{3, 4, 5, 7}, {1, 1, 1, 1}, {}}); \
- checker.set_param(Mode::_optr).execs({{1, 1, 1, 1}, {3, 4, 5, 7}, {}}); \
- checker.set_param(Mode::_optr).execs({{1, 7}, {1, 7}, {}}); \
- checker.set_param(Mode::_optr).execs({{1, 2, 2}, {1, 2, 1}, {}}); \
- checker.set_param(Mode::_optr).execs({{1, 2, 1}, {1, 2, 2}, {}}); \
- checker.set_param(Mode::_optr).execs({{1, 2, 2}, {1, 1, 1}, {}}); \
- checker.set_param(Mode::_optr).execs({{1, 1, 1}, {1, 2, 2}, {}}); \
- checker.set_param(Mode::_optr).execs({{3, 4, 1}, {3, 4, 1}, {}});
-
- #define BUILD_BINARY_COMPLATE_TEST_CASE \
- BINARY_COMPLATE_TEST_CASE(ADD) \
- BINARY_COMPLATE_TEST_CASE(MUL) \
- BINARY_COMPLATE_TEST_CASE(MAX) \
- BINARY_COMPLATE_TEST_CASE(MIN) \
- BINARY_COMPLATE_TEST_CASE(SUB)
-
- UniformFloatRNG rng1(1e-5, 7e1);
- checker.set_rng(0, &rng1);
- checker.set_epsilon(1e-2);
- checker.set_dtype(0, dtype::BFloat16());
- checker.set_dtype(1, dtype::BFloat16());
- BUILD_BINARY_COMPLATE_TEST_CASE
-
- #undef BINARY_COMPLATE_TEST_CASE
- #undef BUILD_BINARY_COMPLATE_TEST_CASE
-
- // ternary
- #define TERNARY_COMPLATE_TEST_CASE(_optr) \
- checker.set_param(Mode::_optr) \
- .execs({{3, 4, 7}, {3, 4, 7}, {3, 4, 7}, {}}); \
- checker.set_param(Mode::_optr) \
- .execs({{1, 4, 1, 1}, {3, 4, 5, 7}, {1, 4, 1, 1}, {}}); \
- checker.set_param(Mode::_optr) \
- .execs({{1, 4, 1}, {3, 4, 7}, {1, 4, 1}, {}}); \
- checker.set_param(Mode::_optr) \
- .execs({{3, 4, 5, 7}, {3, 4, 5, 7}, {1, 1, 1, 1}, {}}); \
- checker.set_param(Mode::_optr).execs({{1, 7}, {1, 7}, {1, 7}, {}}); \
- checker.set_param(Mode::_optr) \
- .execs({{1, 2, 1}, {1, 2, 2}, {1, 2, 1}, {}}); \
- checker.set_param(Mode::_optr) \
- .execs({{1, 2, 2}, {1, 2, 2}, {1, 1, 1}, {}}); \
- checker.set_param(Mode::_optr).execs({{3, 4, 1}, {3, 4, 1}, {3, 4, 1}, {}});
-
- #define BUILD_TERNARY_COMPLATE_TEST_CASE \
- TERNARY_COMPLATE_TEST_CASE(FUSE_MUL_ADD3)
-
- UniformFloatRNG rng2(1e-5, 7e1);
- checker.set_rng(0, &rng2);
- checker.set_epsilon(1e-2);
- checker.set_dtype(0, dtype::BFloat16());
- checker.set_dtype(1, dtype::BFloat16());
- checker.set_dtype(2, dtype::BFloat16());
- BUILD_TERNARY_COMPLATE_TEST_CASE
-
- #undef TERNARY_COMPLATE_TEST_CASE
- #undef BUILD_TERNARY_COMPLATE_TEST_CASE
- }
-
- //! the memory of this test case is too large, sometimes will fail on tx1
- TEST_F(CUDA, ELEMWISE_BENCHMARK_DENSE) {
- constexpr size_t A = 256 * 1024 * 64,
- S0 = 16, S1 = 256, S2 = 64, S3 = 64;
- static_assert(A == S0 * S1 * S2 * S3, "bad value");
- SyncedTensor<>
- t0(handle_cuda(), {TensorShape{S0, S1, S2, S3}, dtype::Float32()}),
- t1(handle_cuda(), {TensorShape{S0, S1, S2, S3}, dtype::Float32()});
- UniformFloatRNG rng{-2.f, 2.f};
- rng.gen(t0.tensornd_host());
- run_tensor_add(handle_cuda(),
- t0.tensornd_dev(), t0.tensornd_dev(), t1.tensornd_dev());
- auto p0 = t0.ptr_host(), p1 = t1.ptr_host();
- for (size_t i = 0; i < A; ++ i) {
- ASSERT_EQ(p0[i] + p0[i], p1[i]) << "at index " << i << "/" << A;
- }
- }
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(CUDA, ELEMWISE_BENCHMARK_BCAST_101) {
- constexpr size_t A = 511, B = 509, C0 = 23, C1 = 23, C = C0 * C1;
- SyncedTensor<>
- t0(handle_cuda(), {TensorShape{A, B, C0, C1}, dtype::Float32()}),
- t1(handle_cuda(), {TensorShape{1, B, 1, 1}, dtype::Float32()}),
- t2(handle_cuda(), {TensorShape{A, B, C0, C1}, dtype::Float32()});
- UniformFloatRNG rng{-2.f, 2.f};
- rng.gen(t0.tensornd_host());
- rng.gen(t1.tensornd_host());
- run_tensor_add(handle_cuda(),
- t0.tensornd_dev(), t1.tensornd_dev(), t2.tensornd_dev());
- auto p0 = t0.ptr_host(), p1 = t1.ptr_host(), p2 = t2.ptr_host();
- for (size_t i = 0; i < A; ++ i) {
- for (size_t j = 0; j < B; ++ j) {
- for (size_t k = 0; k < C; ++ k) {
- auto off = i * B * C + j * C + k;
- ASSERT_EQ(p0[off] + p1[j], p2[off]);
- }
- }
- }
- }
-
- TEST_F(CUDA, ELEMWISE_BENCHMARK_BCAST_10) {
- constexpr size_t A = 11583, B = 11587;
- SyncedTensor<> t0(handle_cuda(), {TensorShape{A, B}, dtype::Float32()}),
- t1(handle_cuda(), {TensorShape{1, B}, dtype::Float32()}),
- t2(handle_cuda(), {TensorShape{A, B}, dtype::Float32()});
- UniformFloatRNG rng{-2.f, 2.f};
- rng.gen(t0.tensornd_host());
- rng.gen(t1.tensornd_host());
- run_tensor_add(handle_cuda(),
- t0.tensornd_dev(), t1.tensornd_dev(), t2.tensornd_dev());
- auto p0 = t0.ptr_host(), p1 = t1.ptr_host(), p2 = t2.ptr_host();
- for (size_t i = 0; i < A; ++ i) {
- for (size_t j = 0; j < B; ++ j) {
- auto off = i * B + j;
- ASSERT_EQ(p0[off] + p1[j], p2[off]);
- }
- }
- }
-
- TEST_F(CUDA, ELEMWISE_BENCHMARK_BCAST_01) {
- constexpr size_t A = 11583, B = 11587;
- SyncedTensor<> t0(handle_cuda(), {TensorShape{1, A, B}, dtype::Float32()}),
- t1(handle_cuda(), {TensorShape{1, A, 1}, dtype::Float32()}),
- t2(handle_cuda(), {TensorShape{1, A, B}, dtype::Float32()});
- UniformFloatRNG rng{-2.f, 2.f};
- rng.gen(t0.tensornd_host());
- rng.gen(t1.tensornd_host());
- run_tensor_add(handle_cuda(),
- t0.tensornd_dev(), t1.tensornd_dev(), t2.tensornd_dev());
- auto p0 = t0.ptr_host(), p1 = t1.ptr_host(), p2 = t2.ptr_host();
- for (size_t i = 0; i < A; ++ i) {
- for (size_t j = 0; j < B; ++ j) {
- auto off = i * B + j;
- ASSERT_EQ(p0[off] + p1[i], p2[off]);
- }
- }
- }
-
- TEST_F(CUDA, BENCHMARK_ELEMWISE_IBYTE) {
- Benchmarker<ElemwiseForward> bencher(handle_cuda());
- using Mode = ElemwiseForward::Param::Mode;
- auto run_bench = [&](size_t N, size_t C, size_t H, size_t W) {
- size_t nr_times = 100;
- bencher.set_times(nr_times)
- .set_param(Mode::FUSE_ADD_RELU)
- .set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8());
- auto time = bencher.execs({{N * C * H * W + 1}, {N * C * H * W + 1}, {}}) /
- nr_times;
- printf("time = %.2fms, bandwidth = %.2fGB/s\n", time,
- (3.0 * (N * C * H * W + 1)) / (time * 1e6));
- time = bencher.execs({{N, C / 4, H, W, 4}, {N, C / 4, H, W, 4}, {}}) /
- nr_times;
- printf("time = %.2fms, bandwidth = %.2fGB/s\n", time,
- (3.0 * N * C * H * W) / (time * 1e6));
- time = bencher.execs({{N, C / 4, H, W, 4}, {1, C / 4, 1, 1, 4}, {}}) /
- nr_times;
- printf("time = %.2fms, bandwidth = %.2fGB/s\n", time,
- (C + 2.0 * N * C * H * W) / (time * 1e6));
- time = bencher.execs({{N, C / 4, H, W, 4}, {1}, {}}) / nr_times;
- printf("time = %.2fms, bandwidth = %.2fGB/s\n", time,
- (2.0 * N * C * H * W + 1) / (time * 1e6));
- time = bencher.execs(
- {{N, C / 32, H, W, 32}, {N, C / 32, H, W, 32}, {}}) /
- nr_times;
- printf("time = %.2fms, bandwidth = %.2fGB/s\n", time,
- (3.0 * N * C * H * W) / (time * 1e6));
- time = bencher.execs(
- {{N, C / 32, H, W, 32}, {1, C / 32, 1, 1, 32}, {}}) /
- nr_times;
- printf("time = %.2fms, bandwidth = %.2fGB/s\n", time,
- (C + 2.0 * N * C * H * W) / (time * 1e6));
- bencher.set_dtype(0, dtype::Float32()).set_dtype(1, dtype::Float32());
- time = bencher.execs({{N, C / 4, H, W}, {N, C / 4, H, W}, {}}) /
- nr_times;
- printf("time = %.2fms, bandwidth = %.2fGB/s\n", time,
- (3.0 * N * C * H * W) / (time * 1e6));
- time = bencher.execs({{N, C / 4, H, W}, {1, C / 4, 1, 1}, {}}) /
- nr_times;
- printf("time = %.2fms, bandwidth = %.2fGB/s\n", time,
- (C + 2.0 * N * C * H * W) / (time * 1e6));
-
- };
- run_bench(256, 256, 56, 56);
- }
-
- TEST_F(CUDA, BENCHMARK_ELEMWISE_MIN_MAX) {
- Benchmarker<ElemwiseForward> bencher(handle_cuda());
- using Mode = ElemwiseForward::Param::Mode;
- UniformIntRNG const_1{1, 1}, rng{-128, 127};
- auto run_bench = [&](size_t N, size_t C, size_t H, size_t W, DType dtype) {
- size_t nr_times = 1000;
- bencher.set_times(nr_times)
- .set_param(Mode::MIN)
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_dtype(0, dtype)
- .set_dtype(1, dtype);
- auto time =
- bencher.execs({{N, C / 4, H, W, 4}, {N, C / 4, H, W, 4}, {}}) /
- nr_times;
- printf("time = %.2fms, bandwidth = %.2fGB/s\n", time,
- (3.0 * N * C * H * W) / (time * 1e6));
- bencher.set_param(Mode::MAX).set_rng(0, &const_1).set_rng(1, &const_1);
- time = bencher.execs({{N, C / 4, H, W, 4}, {N, C / 4, H, W, 4}, {}}) /
- nr_times;
- printf("time = %.2fms, bandwidth = %.2fGB/s\n", time,
- (3.0 * N * C * H * W) / (time * 1e6));
- };
- run_bench(256, 256, 56, 56, dtype::Int8());
- }
- #endif
-
- // vim: syntax=cpp.doxygen
|