|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import numpy as np
- import torch
- from helpers import randomTorch
-
- import megengine as mge
- import megengine._internal as mgb
- import megengine.functional
- import megengine.optimizer as optimizer
- from megengine import get_default_device, set_default_device
- from megengine.core import Parameter, tensor
- from megengine.jit import trace
- from megengine.module import Module as MGEModule
- from megengine.module.pytorch import PyTorchModule
- from megengine.test import assertTensorClose
-
-
- def test_pytorch_forward():
- class APlusB(torch.nn.Module):
- def __init__(self):
- super(APlusB, self).__init__()
-
- def forward(self, a, b):
- return a + b
-
- a = randomTorch(15, 15)
- b = randomTorch(15, 15)
-
- def get_pytorch_forward():
- return APlusB()(a, b)
-
- def get_mge_forward():
- mge_module = PyTorchModule(APlusB())
- mge_a = tensor(a.numpy(), dtype=np.float32)
- mge_b = tensor(b.numpy(), dtype=np.float32)
- return mge_module(mge_a, mge_b)
-
- assertTensorClose(get_pytorch_forward().numpy(), get_mge_forward().numpy())
-
-
- def test_pytorch_backward():
- class APlusB(torch.nn.Module):
- def __init__(self):
- super(APlusB, self).__init__()
-
- def forward(self, a, b):
- return a + b
-
- a = randomTorch(15, 15)
- b = randomTorch(15, 15)
-
- def get_pytorch_backward():
- parameter_a = a.clone()
- parameter_a.requires_grad = True
- c = APlusB()(parameter_a, b)
- d = APlusB()(c, b)
- e = torch.sum(d)
- e.backward()
- return parameter_a.grad
-
- def get_mge_backward():
- mge_module = PyTorchModule(APlusB())
- mge_a = Parameter(a.numpy(), dtype=np.float32)
- mge_b = tensor(b.numpy(), dtype=np.float32)
- mge_c = mge_module(mge_a, mge_b)
- mge_d = mge_module(mge_c, mge_b)
- mge_e = mge.functional.sum(mge_d)
- return mge.functional.grad(mge_e, mge_a, use_virtual_grad=False)
-
- assertTensorClose(get_pytorch_backward().numpy(), get_mge_backward().numpy())
-
-
- def test_pytorch_mixed():
-
- init_param = (np.array([2.0], dtype=np.float32), np.array([3.0], dtype=np.float32))
- lr = 1.0
-
- class Mixed(MGEModule):
- class SubModule(torch.nn.Module):
- def __init__(self):
- super().__init__()
- self.multiplier = torch.nn.Parameter(torch.tensor(init_param[0]))
-
- def forward(self, inp):
- return inp * self.multiplier
-
- def __init__(self):
- super().__init__()
- self.torch_module = PyTorchModule(self.SubModule())
- self.multiplier = Parameter(init_param[1], dtype=np.float32)
-
- def forward(self, inp):
- return self.torch_module(inp) * self.multiplier
-
- def run(step, enable_trace, use_symbolic):
- def train_func(data, net=None, opt=None):
- pred = net(data)
- opt.backward(pred)
- return pred
-
- if enable_trace:
- train_func = trace(train_func, symbolic=use_symbolic)
-
- net = Mixed()
- data = tensor()
- opt = optimizer.SGD(net.parameters(), lr=lr)
-
- saved_param = init_param
- for i in range(step):
- opt.zero_grad()
- data.set_value([i + 1.0])
- output = train_func(data, net=net, opt=opt)
- opt.step()
-
- expect_param = (
- saved_param[0] - lr * saved_param[1] * data.numpy(),
- saved_param[1] - lr * saved_param[0] * data.numpy(),
- )
- assertTensorClose(
- output.numpy(), saved_param[0] * saved_param[1] * data.numpy()
- )
- torch_param = net.torch_module._torch_params[0].detach().cpu()
- assertTensorClose(torch_param.numpy(), expect_param[0])
- assertTensorClose(net.multiplier.numpy(), expect_param[1])
- saved_param = expect_param
-
- run(1, False, False)
- run(1, True, True)
- run(1, True, False)
-
- run(2, False, False)
- run(2, True, True)
- run(2, True, False)
|