|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import numpy as np
- import pytest
-
- import megengine as mge
- import megengine._internal as mgb
- from megengine.core import tensor
- from megengine.quantization.fake_quant import TQT_Function
- from megengine.test import assertTensorClose
-
-
- class numpy_TQT_Function:
- def __init__(self, lowerbound, upperbound):
- super().__init__()
- self.lowerbound = lowerbound
- self.upperbound = upperbound
-
- def forward(self, inp, scale):
- t = 2 ** scale
- # t = F.maximum(t, 1e-4)
- inp_scaled = inp / t
- inp_clipped = np.maximum(
- np.minimum(inp_scaled, self.upperbound), self.lowerbound
- )
- inp_rounded = np.round(inp_clipped)
- inp_flq = inp_rounded * t
- self.saved_tensors = (inp_scaled, inp_rounded, t)
- return inp_flq
-
- def backward(self, grad_inp_flq):
- (inp_scaled, inp_rounded, t) = self.saved_tensors
- mask_clip = (inp_scaled < -0.5 + self.lowerbound) + (
- inp_scaled > self.upperbound + 0.5
- ) # mask for accumulating the gradients of |data_scaled|>L
- mask_quant = np.abs(
- mask_clip - 1
- ) # mask for accumulating the gradients with |data_scaled|<=L
- grad_quant = (
- grad_inp_flq * mask_quant * (inp_rounded - inp_scaled)
- ) # gradient within |data_scaled|<=L
- grad_clip = (
- grad_inp_flq * mask_clip * inp_rounded
- ) # gradient with | data_scaled|>L
- grad_s = grad_clip.sum() + grad_quant.sum()
- # dL/ds = dL/dt * t * ln(2)
- grad_s = grad_s * t * np.log(2)
- grad_inp = grad_inp_flq * mask_quant
- return grad_inp, grad_s
-
-
- def test_TQT():
- f = TQT_Function(-127, 127)
- nf = numpy_TQT_Function(-127, 127)
-
- def check_inp(a, b, c, a_np, b_np, c_np):
- assertTensorClose(
- f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32")
- )
- c1, c2 = f.backward(c)
- c1_np, c2_np = nf.backward(c_np)
- assertTensorClose(c1.numpy(), c1_np.astype("float32"))
- assertTensorClose(c2.numpy(), c2_np.astype("float32"))
-
- a = tensor()
- b = tensor()
- a_np = np.random.random((4, 3)).astype("float32")
- b_np = np.random.random((1)).astype("float32")
- a.set_value(a_np)
- b.set_value(b_np)
- check_inp(a, b, b, a_np, b_np, b_np)
|