|
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import numpy as np
-
- from ... import functional as F
- from ...core.tensor import dtype
- from ...tensor import Parameter
- from ..qat import linear as QAT
- from .module import QuantizedModule
-
-
- class Linear(QuantizedModule):
- r"""Quantized version of :class:`~.qat.linear.Linear`."""
-
- def __init__(self, dtype: np.dtype = None):
- super().__init__()
- self.weight = None
- self.bias = None
- self.output_dtype = dtype
-
- def forward(self, inp):
- if self.training:
- raise ValueError("quantized module only support inference.")
- inp_scale = dtype.get_scale(inp.dtype)
- w_scale = dtype.get_scale(self.weight.dtype)
- bias_dtype = dtype.qint32(inp_scale * w_scale)
- return F.nn.linear(
- inp,
- self.weight,
- None if self.bias is None else self.bias.astype(bias_dtype),
- ).astype(self.output_dtype)
-
- @classmethod
- def from_qat_module(cls, qat_module: QAT.Linear):
- r"""
- Return a :class:`~.QuantizedModule` instance converted from a
- :class:`~.QATModule` instance.
- """
- output_dtype = qat_module.get_activation_dtype()
- qmod = cls(dtype=output_dtype)
- weight = qat_module.weight.astype(qat_module.get_weight_dtype())
- qmod.weight = Parameter(weight.numpy())
- if qat_module.bias is not None:
- qmod.bias = Parameter(qat_module.bias.numpy())
- return qmod
|