|
- /**
- * \file dnn/test/x86/matrix_mul.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "test/x86/fixture.h"
-
- #include "src/x86/utils.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/matrix_mul.h"
- #include "test/common/rng.h"
- using namespace megdnn;
- using namespace test;
- using namespace megdnn::x86;
-
- #if MEGDNN_X86_WITH_VNNI
- TEST_F(X86, MATRIX_MUL_VNNI_8X8X32) {
- matrix_mul::check_matrix_mul(
- dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(),
- "X86_INT8X8X32_VNNI");
- }
- #endif
-
- #if MEGDNN_X86_WITH_MKL_DNN
- TEST_F(X86, MATRIX_MUL_MKLDNN_8X8X32) {
- if (is_supported(SIMDType::VNNI)) {
- matrix_mul::check_matrix_mul(
- dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(),
- "X86_INT8X8X32_MKLDNN");
- } else {
- std::cout << "can not do mkldnn matmul check for no vnni support" << std::endl;
- matrix_mul::check_matrix_mul(
- dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle());
- }
- }
- #endif
- //! FIXME: need to add tests of GEMV and QUINT8
- TEST_F(X86, MATRIX_MUL_AVX2_8X8X32) {
- matrix_mul::check_matrix_mul(
- dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(),
- "X86_INT8X8X32_AVX2_2X4X16", param::MatrixMul::Format::DEFAULT, 8, 1e-3,
- false);
- matrix_mul::check_matrix_mul(
- dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(),
- "X86_INT8X8X32_AVX2_4X16X2", param::MatrixMul::Format::DEFAULT, 8, 1e-3,
- false);
- }
- TEST_F(X86, MATRIX_MUL_AVX2_8X8X16) {
- matrix_mul::check_matrix_mul(
- dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, handle(),
- "X86_INT8X8X16_AVX2", param::MatrixMul::Format::DEFAULT, 8, 1e-3, false);
- }
- TEST_F(X86, MATRIX_MUL_SSE_8X8X16) {
- matrix_mul::check_matrix_mul(
- dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, handle(), "X86_INT8X8X16_SSE",
- param::MatrixMul::Format::DEFAULT, 8, 1e-3, false);
- }
- TEST_F(X86, MATRIX_MUL_SSE_8X8X32) {
- matrix_mul::check_matrix_mul(
- dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(),
- "X86_INT8X8X32_SSE_4X8X2", param::MatrixMul::Format::DEFAULT, 8, 1e-3,
- false);
- }
-
- #if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM
- TEST_F(X86, MATRIX_MUL_MKL_PACKA) {
- matrix_mul::check_matrix_mul(
- dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(),
- "X86_F32_MKL_PACKA");
- }
- #endif
-
- TEST_F(X86, MATRIX_MUL_AVX2_MK8_8X8) {
- matrix_mul::check_matrix_mul(
- dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(),
- "X86_F32MK8_8X8", param::MatrixMul::Format::MK8, 1, 1e-3, false);
- }
-
- TEST_F(X86, MATRIX_MUL_AVX2_6x16) {
- matrix_mul::check_matrix_mul(
- dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(),
- "X86_F32_6x16", param::MatrixMul::Format::DEFAULT, 1, 1e-3, false);
- }
-
- #if MEGDNN_WITH_BENCHMARK
-
- TEST_F(X86, BENCHMARK_MATRIX_MUL_AVX2_MK8_8X8) {
- auto args = matrix_mul::get_benchmark_matmul_mk_packed_args(8);
- matrix_mul::benchmark_with_contrast(
- handle(), args, dtype::Float32{}, dtype::Float32{}, dtype::Float32{},
- "X86_F32MK8_8X8", param::MatrixMul::Format::MK8, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{}, "X86_F32_BLAS");
- }
-
- TEST_F(X86, BENCHMARK_MATRIX_MUL_AVX2_6x16) {
- auto args = matrix_mul::get_benchmark_matmul_mk_packed_args(8);
- matrix_mul::benchmark_with_contrast(
- handle(), args, dtype::Float32{}, dtype::Float32{}, dtype::Float32{},
- "X86_F32_6x16", param::MatrixMul::Format::DEFAULT, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{}, "X86_F32_BLAS");
- }
-
- TEST_F(X86, BENCHMARK_MATRIX_MUL_8X8X32) {
- constexpr size_t RUNS = 50;
- auto rng = std::make_unique<UniformIntRNG>(-127, 127);
- #if MEGDNN_X86_WITH_VNNI
- Benchmarker<MatrixMul> benchmarker_vnni(handle());
- benchmarker_vnni.set_times(RUNS)
- .set_dtype(0, dtype::Int8{})
- .set_dtype(1, dtype::Int8{})
- .set_dtype(2, dtype::Int32{})
- .set_display(false)
- .set_rng(0, rng.get())
- .set_rng(1, rng.get());
- benchmarker_vnni.set_before_exec_callback(
- AlgoChecker<MatrixMul>("X86_INT8X8X32_VNNI"));
- #endif
-
- #if MEGDNN_X86_WITH_MKL_DNN
- Benchmarker<MatrixMul> benchmarker_mkldnn(handle());
- benchmarker_mkldnn.set_times(RUNS)
- .set_dtype(0, dtype::Int8{})
- .set_dtype(1, dtype::Int8{})
- .set_dtype(2, dtype::Int32{})
- .set_display(false)
- .set_rng(0, rng.get())
- .set_rng(1, rng.get());
- benchmarker_mkldnn.set_before_exec_callback(
- AlgoChecker<MatrixMul>("X86_INT8X8X32_MKLDNN"));
- #endif
- Benchmarker<MatrixMul> benchmarker_avx2_4x16x2(handle());
- benchmarker_avx2_4x16x2.set_display(false)
- .set_times(RUNS)
- .set_dtype(0, dtype::Int8{})
- .set_dtype(1, dtype::Int8{})
- .set_dtype(2, dtype::Int32{})
- .set_rng(0, rng.get())
- .set_rng(1, rng.get());
- benchmarker_avx2_4x16x2.set_before_exec_callback(
- AlgoChecker<MatrixMul>("X86_INT8X8X32_AVX2_4X16X2"));
-
- Benchmarker<MatrixMul> benchmarker_avx2_4x16x2_8816(handle());
- benchmarker_avx2_4x16x2_8816.set_display(false)
- .set_times(RUNS)
- .set_dtype(0, dtype::Int8{})
- .set_dtype(1, dtype::Int8{})
- .set_dtype(2, dtype::Int16{})
- .set_rng(0, rng.get())
- .set_rng(1, rng.get());
- benchmarker_avx2_4x16x2_8816.set_before_exec_callback(
- AlgoChecker<MatrixMul>("X86_INT8X8X16_AVX2"));
-
- Benchmarker<MatrixMul> benchmarker_sse_4x8x2_8816(handle());
- benchmarker_sse_4x8x2_8816.set_display(false)
- .set_times(RUNS)
- .set_dtype(0, dtype::Int8{})
- .set_dtype(1, dtype::Int8{})
- .set_dtype(2, dtype::Int16{})
- .set_rng(0, rng.get())
- .set_rng(1, rng.get());
- benchmarker_sse_4x8x2_8816.set_before_exec_callback(
- AlgoChecker<MatrixMul>("X86_INT8X8X16_SSE"));
-
- Benchmarker<MatrixMul> benchmarker_avx2_2x4x16(handle());
- benchmarker_avx2_2x4x16.set_display(false)
- .set_times(RUNS)
- .set_dtype(0, dtype::Int8{})
- .set_dtype(1, dtype::Int8{})
- .set_dtype(2, dtype::Int32{})
- .set_rng(0, rng.get())
- .set_rng(1, rng.get());
- benchmarker_avx2_2x4x16.set_before_exec_callback(
- AlgoChecker<MatrixMul>("X86_INT8X8X32_AVX2_2X4X16"));
-
- Benchmarker<MatrixMul> benchmarker_sse_4x8x2(handle());
- benchmarker_sse_4x8x2.set_display(false)
- .set_times(RUNS)
- .set_dtype(0, dtype::Int8{})
- .set_dtype(1, dtype::Int8{})
- .set_dtype(2, dtype::Int32{})
- .set_rng(0, rng.get())
- .set_rng(1, rng.get());
- benchmarker_sse_4x8x2.set_before_exec_callback(
- AlgoChecker<MatrixMul>("X86_INT8X8X32_SSE_4X8X2"));
-
- Benchmarker<MatrixMul> benchmarker_float(handle());
- benchmarker_float.set_display(false)
- .set_times(RUNS)
- .set_rng(0, rng.get())
- .set_rng(1, rng.get());
- benchmarker_float.set_before_exec_callback(AlgoChecker<MatrixMul>("X86_F32_BLAS"));
-
- auto run = [&](size_t M, size_t N, size_t K) {
- const float computations = 2.f * M * K * N * 1e-6;
- std::cout << "run : {" << M << "," << N << "," << K << "} ";
- auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS;
- std::cout << "float: " << float_used << " ms, " << computations / float_used
- << " Gflops, ";
-
- #if MEGDNN_X86_WITH_VNNI
- if (is_supported(SIMDType::VNNI)) {
- auto vnni_used = benchmarker_vnni.exec({{M, K}, {K, N}, {}}) / RUNS;
- std::cout << "vnni: " << vnni_used << " ms, " << computations / vnni_used
- << " Gflops, "
- << "speed_up " << float_used / vnni_used << ", ";
- }
- #endif
-
- #if MEGDNN_X86_WITH_MKL_DNN
- if (is_supported(SIMDType::VNNI)) {
- auto mkldnn_used = benchmarker_mkldnn.exec({{M, K}, {K, N}, {}}) / RUNS;
- std::cout << "mkldnn: " << mkldnn_used << " ms, "
- << computations / mkldnn_used << " Gflops, "
- << "speed_up " << float_used / mkldnn_used << ", ";
- }
-
- #endif
- if (is_supported(SIMDType::AVX2)) {
- auto avx2_used_4x16x2 =
- benchmarker_avx2_4x16x2.exec({{M, K}, {K, N}, {}}) / RUNS;
- auto avx2_used_2x4x16 =
- benchmarker_avx2_2x4x16.exec({{M, K}, {K, N}, {}}) / RUNS;
- std::cout << "avx2_k2: " << avx2_used_4x16x2 << " ms, k2 throughput "
- << computations / avx2_used_4x16x2 << " Gflops, "
- << "k2_speed_up " << float_used / avx2_used_4x16x2
- << ", k16_speed_up " << float_used / avx2_used_2x4x16 << ",";
- auto avx2_used_4x16x2_8816 =
- benchmarker_avx2_4x16x2_8816.exec({{M, K}, {K, N}, {}}) / RUNS;
- std::cout << "avx2_8816: " << avx2_used_4x16x2_8816
- << " ms, 8816 throughput " << computations / avx2_used_4x16x2_8816
- << " Gflops,";
- }
- if (is_supported(SIMDType::SSE4_1)) {
- auto sse_used = benchmarker_sse_4x8x2.exec({{M, K}, {K, N}, {}}) / RUNS;
- std::cout << "sse: " << sse_used << " ms, " << computations / sse_used
- << " Gflops, "
- << "speed_up " << float_used / sse_used << ", ";
- auto sse_used_8816 =
- benchmarker_sse_4x8x2_8816.exec({{M, K}, {K, N}, {}}) / RUNS;
- std::cout << "sse_8816: " << sse_used_8816 << " ms, "
- << computations / sse_used_8816 << " Gflops, ";
- }
- std::cout << std::endl;
- };
- run(256, 256, 256);
-
- for (size_t M : {8, 64, 112, 256, 512}) {
- for (size_t K : {8, 16, 32, 64, 112, 256, 512}) {
- for (size_t N : {8, 64, 112, 256, 512}) {
- run(M, N, K);
- }
- }
- }
- }
-
- #endif // MEGDNN_WITH_BENCHMARK
-
- // vim: syntax=cpp.doxygen
|