|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import numpy as np
- import pytest
-
- import megengine as mge
- from megengine import tensor
- from megengine.core.autodiff.grad import Function, Grad
- from megengine.core.tensor.utils import make_shape_tuple
- from megengine.quantization.fake_quant import TQT_Function
- from megengine.quantization.internal_fake_quant import *
- from megengine.quantization.utils import QuantMode, fake_quant_tensor
-
-
- class numpy_TQT_Function:
- def __init__(self, lowerbound, upperbound):
- super().__init__()
- self.lowerbound = lowerbound
- self.upperbound = upperbound
-
- def forward(self, inp, scale):
- t = 2 ** scale
- # t = F.maximum(t, 1e-4)
- inp_scaled = inp / t
- inp_clipped = np.maximum(
- np.minimum(inp_scaled, self.upperbound), self.lowerbound
- )
- inp_rounded = np.round(inp_clipped)
- inp_flq = inp_rounded * t
- self.saved_tensors = (inp_scaled, inp_rounded, t)
- return inp_flq
-
- def backward(self, grad_inp_flq):
- (inp_scaled, inp_rounded, t) = self.saved_tensors
- mask_clip = (inp_scaled < -0.5 + self.lowerbound) + (
- inp_scaled > self.upperbound + 0.5
- ) # mask for accumulating the gradients of |data_scaled|>L
- mask_quant = np.abs(
- mask_clip - 1
- ) # mask for accumulating the gradients with |data_scaled|<=L
- grad_quant = (
- grad_inp_flq * mask_quant * (inp_rounded - inp_scaled)
- ) # gradient within |data_scaled|<=L
- grad_clip = (
- grad_inp_flq * mask_clip * inp_rounded
- ) # gradient with | data_scaled|>L
- grad_s = grad_clip.sum() + grad_quant.sum()
- # dL/ds = dL/dt * t * ln(2)
- grad_s = grad_s * t * np.log(2)
- grad_inp = grad_inp_flq * mask_quant
- return grad_inp, grad_s
-
-
- def test_TQT():
- f = TQT_Function(-127, 127)
- nf = numpy_TQT_Function(-127, 127)
-
- def check_inp(a, b, c, a_np, b_np, c_np):
- np.testing.assert_allclose(
- f.forward(a, b).numpy(),
- nf.forward(a_np, b_np).astype("float32"),
- rtol=1e-6,
- atol=1e-6,
- )
- c1, c2 = f.backward(c)
- c1_np, c2_np = nf.backward(c_np)
- np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6)
- np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5)
-
- a_np = np.random.random((4, 3)).astype("float32")
- b_np = np.random.random((1)).astype("float32")
- a = tensor(a_np)
- b = tensor(b_np)
- check_inp(a, b, b, a_np, b_np, b_np)
-
-
-
-
- def _save_to(self, name="grad"):
- def callback(tensor, grad):
- setattr(self, name, grad)
-
- return callback
-
-
- class Round(Function):
- def forward(self, x):
- return F.round(x)
-
- def backward(self, output_grads):
- return output_grads
-
-
- def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax):
- oup = Round()(inp / scale) + zero_point
- oup = F.minimum(F.maximum(oup, qmin), qmax)
- oup = (oup - zero_point) * scale
- return oup
-
-
- def test_fakequant():
- qmin = -126
- qmax = 129
-
- def run(zero_point, scale):
- q_dict = {}
- q_dict["mode"] = QuantMode.ASYMMERTIC
- q_dict["scale"] = scale
- q_dict["zero_point"] = zero_point
- inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32))
- inp = tensor(inp_data, dtype=np.float32)
- # test forward
- oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy()
- oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy()
- assert np.allclose(oup, oup_gt)
- assert oup.shape == oup_gt.shape
-
- # test backward
- x = tensor(inp_data, dtype=np.float32)
- grad = Grad().wrt(x, callback=_save_to(x))
- y = fake_quant_tensor(x, qmin, qmax, q_dict)
- grad(y, tensor(F.ones_like(x)))
-
- x1 = tensor(inp_data, dtype=np.float32)
- grad = Grad().wrt(x1, callback=_save_to(x1))
- y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax)
- grad(y1, tensor(F.ones_like(x1)))
-
- assert np.allclose(x.grad.numpy(), x1.grad.numpy())
- assert make_shape_tuple(x.grad.shape) == make_shape_tuple(x1.grad.shape)
-
- zero_point = tensor([1.0], dtype=np.float32)
- scale = tensor([4.0], dtype=np.float32)
- run(zero_point, scale)
-
- zero_point = tensor(1.0 * np.ones((1, 32, 1, 1)), dtype=np.float32)
- scale = tensor(4.0 * np.ones((1, 32, 1, 1)), dtype=np.float32)
- run(zero_point, scale)
|