|
- import numpy as np
-
- from megengine import tensor
-
-
- def _default_compare_fn(x, y):
- np.testing.assert_allclose(x.numpy(), y, rtol=1e-6)
-
-
- def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs):
- """
- :param cases: the list which have dict element, the list length should be 2 for dynamic shape test.
- and the dict should have input,
- and should have output if ref_fn is None.
- should use list for multiple inputs and outputs for each case.
- :param func: the function to run opr.
- :param compare_fn: the function to compare the result and expected, use assertTensorClose if None.
- :param ref_fn: the function to generate expected data, should assign output if None.
-
- Examples:
-
- .. code-block::
-
- dtype = np.float32
- cases = [{"input": [10, 20]}, {"input": [20, 30]}]
- opr_test(cases,
- F.eye,
- ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
- dtype=dtype)
-
- """
-
- def check_results(results, expected):
- if not isinstance(results, (tuple, list)):
- results = (results,)
- for r, e in zip(results, expected):
- compare_fn(r, e)
-
- def get_param(cases, idx):
- case = cases[idx]
- inp = case.get("input", None)
- outp = case.get("output", None)
- if inp is None:
- raise ValueError("the test case should have input")
- if not isinstance(inp, (tuple, list)):
- inp = (inp,)
- if ref_fn is not None and callable(ref_fn):
- outp = ref_fn(*inp)
- if outp is None:
- raise ValueError("the test case should have output or reference function")
- if not isinstance(outp, (tuple, list)):
- outp = (outp,)
-
- return inp, outp
-
- if len(cases) == 0:
- raise ValueError("should give one case at least")
-
- if not callable(func):
- raise ValueError("the input func should be callable")
-
- inp, outp = get_param(cases, 0)
- inp_tensor = [tensor(inpi) for inpi in inp]
-
- results = func(*inp_tensor, **kwargs)
- check_results(results, outp)
|