|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- from typing import Iterable, Union
-
- import numpy as np
-
- from ..tensor import Parameter, tensor
- from .optimizer import Optimizer
-
-
- class Adadelta(Optimizer):
- r"""
- Implements Adadelta algorithm.
-
- It has been proposed in `"ADADELTA: An Adaptive Learning Rate Method" <https://arxiv.org/abs/1212.5701>`_.
-
- :param params: iterable of parameters to optimize or dicts defining
- parameter groups.
- :param lr: coefficient that scales delta before it is applied
- to the parameters. Default: 1.0
- :param rho: coefficient used for computing a running average
- of squared gradients. Default: 0.9
- :param eps: term added to the denominator to improve
- numerical stability. Default: 1e-6
- :param weight_decay: weight decay (L2 penalty). Default: 0
- """
-
- def __init__(
- self,
- params: Union[Iterable[Parameter], dict],
- lr: float = 1.0,
- rho: float = 0.9,
- eps: float = 1e-6,
- weight_decay: float = 0.0,
- ):
- assert lr >= 0.0, "Invalid learning rate: {}".format(lr)
- assert rho >= 0.0 and rho <= 1.0, "Invalid rho value: {}".format(rho)
- assert eps >= 0.0, "Invalid epsilon value: {}".format(eps)
- assert weight_decay >= 0.0, "Invalid weight_decay value: {}".format(
- weight_decay
- )
-
- defaults = dict(lr=lr, rho=rho, eps=eps, weight_decay=weight_decay)
- super().__init__(params, defaults)
-
- def _create_state(self, param_group):
- for param in param_group["params"]:
- self._add_state(param, "square_avg")
- self._add_state(param, "acc_delta")
- self._add_state(param, "step", initializer=0.0)
-
- def _updates(self, param_group):
- lr = param_group["lr"]
- weight_decay = param_group["weight_decay"]
- rho = param_group["rho"]
- eps = param_group["eps"]
-
- # since `conver_inputs` is disabled for param updates,
- # scalar should be explicitly tansforred to tensor
- _lr = tensor([lr])
- _weight_decay = tensor([weight_decay])
- _rho = tensor([rho])
- _eps = tensor([eps])
-
- c05 = tensor([0.5])
- c1 = tensor([1.0])
- c2 = tensor([2.0])
- for param in param_group["params"]:
-
- if param.grad is None:
- continue
-
- states = self._state[param]
- step = states["step"]
- step += c1
- grad = param.grad
- if weight_decay != 0.0:
- grad += param * _weight_decay
-
- square_avg = states["square_avg"]
- acc_delta = states["acc_delta"]
- square_avg = _rho * square_avg + (c1 - _rho) * grad ** c2
- std = (square_avg + _eps) ** c05
- delta = (acc_delta + _eps) ** c05 / std * grad
- param -= _lr * delta
- acc_delta = _rho * acc_delta + (c1 - _rho) * delta ** c2
- states["square_avg"]._reset(square_avg)
- states["acc_delta"]._reset(acc_delta)
|