|
- #pragma once
-
- #include "src/aarch64/conv_bias/opr_impl.h"
- #include "src/common/opr_delegate.h"
- #include "src/fallback/conv_bias/opr_impl.h"
-
- namespace megdnn {
- namespace aarch64 {
-
- using FallbackConvBiasImpl = fallback::ConvBiasImpl;
-
- class ConvBiasImpl::AlgoQU8MatrixMul final : public AlgoBase {
- static WorkspaceBundle get_bundle(const NCBKernSizeParam& param);
- static void kimpl(const NCBKernParam& param, const NCBKernIndex&);
-
- public:
- AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; }
- const char* name() const override { return "QU8MATMUL"; }
-
- bool usable(
- const NCBKernSizeParam& param,
- AlgoSelectionStrategy algo_selection_strategy) const override;
- size_t get_workspace(const NCBKernSizeParam& param) const override {
- return get_bundle(param).total_size_in_bytes();
- }
- SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam& param) const override {
- size_t group = param.filter_meta.group;
- return {{kimpl, {group, 1_z, 1_z}}};
- }
- //! select matmul to the highest preference
- bool is_preferred(const NCBKernSizeParam& param) const override {
- static CpuOprDelegationStorage<1> storage;
- auto conv_bias_opr = storage.get<ConvBias, 0>();
- return static_cast<ConvBiasImpl*>(conv_bias_opr)
- ->is_matmul_quantized_prefer(param);
- }
- ConvAlgoTypePack get_algo_type() const override {
- return {AlgoDataType::QUINT8X8X32, AlgoCategory::IM2COL};
- }
- MEGDNN_DECL_ALGO_TYPE(AARCH64_MATMUL_QU8)
- };
- } // namespace aarch64
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|