|
- /**
- * \file dnn/test/cuda/chanwise_convolution.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "megdnn/oprs/nn.h"
-
- #include "cuda.h"
- #include "megcore_cuda.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/convolution.h"
- #include "test/common/tensor.h"
- #include "test/common/workspace_wrapper.h"
- #include "test/cuda/benchmark.h"
- #include "test/cuda/fixture.h"
- #include "test/cuda/utils.h"
-
- #include <cuda_profiler_api.h>
- #include <cuda_runtime_api.h>
-
- using namespace megdnn;
- using namespace test;
-
- namespace {
-
- #if MEGDNN_WITH_BENCHMARK
- bool check_need_full_bench() {
- if (getenv("MEGDNN_CHANWISE_CONV_FULLBENCH"))
- return true;
- printf("set MEGDNN_CHANWISE_CONV_FULLBENCH to run full benchmark\n");
- return false;
- }
- #endif
-
- Convolution::Param gconv_param(Convolution::Param p, bool io16xc32 = false) {
- p.sparse = Convolution::Param::Sparse::GROUP;
- if (io16xc32)
- p.compute_mode = Convolution::Param::ComputeMode::FLOAT32;
- return p;
- }
-
- template <int P0, int P1, int P2>
- class BenchmarkEnv {
- Handle *handle, *handle_cpu;
- std::unique_ptr<GaussianRNG> rng;
- TensorLayout lsrc, lflt0, lflt1, ldst;
- std::unique_ptr<Tensor<>> src0, src1, flt0, flt0_cpu, flt1, flt1_cpu, dst0, dst1;
- cudaEvent_t cuda_ev[3];
- cudaStream_t cuda_stream;
- size_t pad_h, pad_w;
-
- template <typename T>
- static std::tuple<T, T, T> shuffle(std::tuple<T, T, T> data) {
- return std::make_tuple(
- std::get<P0>(data), std::get<P1>(data), std::get<P2>(data));
- }
-
- public:
- BenchmarkEnv(Handle* handle, Handle* handle_cpu) {
- this->handle = handle;
- this->handle_cpu = handle_cpu;
- rng = handle->create_operator<GaussianRNG>();
- // make cpu handle used
- handle_cpu->create_operator<Sleep>()->exec();
-
- for (int i = 0; i < 3; ++i)
- cudaEventCreate(&cuda_ev[i]);
- megcoreGetCUDAStream(handle->megcore_computing_handle(), &cuda_stream);
- }
-
- ~BenchmarkEnv() {
- for (int i = 0; i < 3; ++i)
- cudaEventDestroy(cuda_ev[i]);
- }
-
- void alloc(
- size_t N, size_t IC, size_t IH, size_t IW, size_t CHL_MUL, size_t FH,
- size_t FW, size_t PH, size_t PW) {
- pad_h = PH;
- pad_w = PW;
- auto mkly = [](const TensorShape& s) {
- return TensorLayout{s, dtype::Float32()};
- };
- lsrc = mkly({N, IC, IH, IW});
- lflt0 = mkly({CHL_MUL * IC, IC, FH, FW});
- lflt1 = mkly({IC, CHL_MUL, 1, FH, FW});
- ldst = mkly({N, IC * CHL_MUL, IH - FH + 1 + PH * 2, IW - FW + 1 + PW * 2});
- src0.reset(new Tensor<>(handle, lsrc));
- src1.reset(new Tensor<>(handle, lsrc));
- flt0.reset(new Tensor<>(handle, lflt0));
- flt0_cpu.reset(new Tensor<>(handle_cpu, lflt0));
- flt1.reset(new Tensor<>(handle, lflt1));
- flt1_cpu.reset(new Tensor<>(handle_cpu, lflt1));
- dst0.reset(new Tensor<>(handle, ldst));
- dst1.reset(new Tensor<>(handle, ldst));
- }
-
- void fill_src() {
- rng->exec(src0->tensornd(), {});
- megdnn_memcpy_D2D(handle, src1->ptr(), src0->ptr(), lsrc.span().dist_byte());
- }
-
- void fill_flt() {
- rng->exec(flt1->tensornd(), {});
- megdnn_memcpy_D2H(
- handle, flt1_cpu->ptr(), flt1->ptr(), lflt1.span().dist_byte());
-
- const size_t IC = lflt1[0], CHL_MUL = lflt1[1], FSIZE = lflt1[3] * lflt1[4];
-
- // fill flt0 from flt1
- float* src = flt1_cpu->ptr();
- float* dst = flt0_cpu->ptr();
- memset(dst, 0, lflt0.span().dist_byte());
- for (size_t i = 0; i < IC; ++i) {
- for (size_t j = 0; j < CHL_MUL; ++j) {
- memcpy(dst + ((i * CHL_MUL + j) * IC + i) * FSIZE,
- src + (i * CHL_MUL + j) * FSIZE, FSIZE * sizeof(float));
- }
- }
-
- megdnn_memcpy_H2D(handle, flt0->ptr(), dst, lflt0.span().dist_byte());
- }
-
- void fill_dst() {
- rng->exec(dst0->tensornd(), {});
- megdnn_memcpy_D2D(handle, dst1->ptr(), dst0->ptr(), ldst.span().dist_byte());
- }
-
- template <class Opr>
- void exec(Opr* opr0, Opr* opr1) {
- opr0->param().pad_h = pad_h;
- opr0->param().pad_w = pad_w;
- opr1->param() = opr0->param();
- opr1->param().sparse = param::Convolution::Sparse::GROUP;
-
- TensorND a0, b0, c0, a1, b1, c1;
- std::tie(a0, b0, c0) = shuffle(
- std::make_tuple(src0->tensornd(), flt0->tensornd(), dst0->tensornd()));
- std::tie(a1, b1, c1) = shuffle(
- std::make_tuple(src1->tensornd(), flt1->tensornd(), dst1->tensornd()));
- WorkspaceWrapper wk(
- handle,
- std::max(
- opr0->get_workspace_in_bytes(a0.layout, b0.layout, c0.layout),
- opr1->get_workspace_in_bytes(a1.layout, b1.layout, c1.layout)));
- cudaProfilerStart();
- cudaEventRecord(cuda_ev[0], cuda_stream);
- opr0->exec(a0, b0, c0, wk.workspace());
- cudaEventRecord(cuda_ev[1], cuda_stream);
- opr1->exec(a1, b1, c1, wk.workspace());
- cudaEventRecord(cuda_ev[2], cuda_stream);
- cudaProfilerStop();
-
- if (getenv("MEGDNN_CHANWISE_CONV_VERBOSE") ||
- getenv("MEGDNN_CHANWISE_CONV_FULLBENCH")) {
- cudaStreamSynchronize(cuda_stream);
- float t0 = -1, t1 = -1;
- cudaEventElapsedTime(&t0, cuda_ev[0], cuda_ev[1]);
- cudaEventElapsedTime(&t1, cuda_ev[1], cuda_ev[2]);
- printf("%s;%s;%s: cudnn/megdnn: %.3fms/%.3fms=%.3f\n",
- lsrc.TensorShape::to_string().c_str(),
- lflt1.TensorShape::to_string().c_str(),
- ldst.TensorShape::to_string().c_str(), t0, t1, t0 / t1);
- }
- }
-
- //! special for weight preprocess
- void exec_convolution(ConvolutionForward* opr0, ConvolutionForward* opr1) {
- opr0->param().pad_h = pad_h;
- opr0->param().pad_w = pad_w;
- opr1->param() = opr0->param();
- opr1->param().sparse = param::Convolution::Sparse::GROUP;
-
- TensorND a0, b0, c0, a1, b1, c1;
- std::tie(a0, b0, c0) = shuffle(
- std::make_tuple(src0->tensornd(), flt0->tensornd(), dst0->tensornd()));
- std::tie(a1, b1, c1) = shuffle(
- std::make_tuple(src1->tensornd(), flt1->tensornd(), dst1->tensornd()));
- WorkspaceWrapper wk(
- handle, std::max(
- opr0->get_workspace_in_bytes(
- a0.layout, b0.layout, c0.layout, nullptr),
- opr1->get_workspace_in_bytes(
- a1.layout, b1.layout, c1.layout, nullptr)));
- cudaProfilerStart();
- cudaEventRecord(cuda_ev[0], cuda_stream);
- opr0->exec(a0, b0, c0, nullptr, wk.workspace());
- cudaEventRecord(cuda_ev[1], cuda_stream);
- opr1->exec(a1, b1, c1, nullptr, wk.workspace());
- cudaEventRecord(cuda_ev[2], cuda_stream);
- cudaProfilerStop();
-
- if (getenv("MEGDNN_CHANWISE_CONV_VERBOSE") ||
- getenv("MEGDNN_CHANWISE_CONV_FULLBENCH")) {
- cudaStreamSynchronize(cuda_stream);
- float t0 = -1, t1 = -1;
- cudaEventElapsedTime(&t0, cuda_ev[0], cuda_ev[1]);
- cudaEventElapsedTime(&t1, cuda_ev[1], cuda_ev[2]);
- printf("%s;%s;%s: cudnn/megdnn: %.3fms/%.3fms=%.3f\n",
- lsrc.TensorShape::to_string().c_str(),
- lflt1.TensorShape::to_string().c_str(),
- ldst.TensorShape::to_string().c_str(), t0, t1, t0 / t1);
- }
- }
-
- void cmp_dst() {
- Tensor<> dst0_cpu(handle_cpu, ldst), dst1_cpu(handle_cpu, ldst);
- megdnn_memcpy_D2H(handle, dst0_cpu.ptr(), dst0->ptr(), ldst.span().dist_byte());
- megdnn_memcpy_D2H(handle, dst1_cpu.ptr(), dst1->ptr(), ldst.span().dist_byte());
- dst0_cpu.check_with(dst1_cpu);
- }
-
- void cmp_src() {
- Tensor<> src0_cpu(handle_cpu, lsrc), src1_cpu(handle_cpu, lsrc);
- megdnn_memcpy_D2H(handle, src0_cpu.ptr(), src0->ptr(), lsrc.span().dist_byte());
- megdnn_memcpy_D2H(handle, src1_cpu.ptr(), src1->ptr(), lsrc.span().dist_byte());
- src0_cpu.check_with(src1_cpu);
- }
-
- void cmp_flt() {
- Tensor<> flt0_cpu(handle_cpu, lflt0), flt1_cpu(handle_cpu, lflt1);
- float* p0 = flt0_cpu.ptr();
- float* p1 = flt1_cpu.ptr();
- megdnn_memcpy_D2H(handle, p0, flt0->ptr(), lflt0.span().dist_byte());
- megdnn_memcpy_D2H(handle, p1, flt1->ptr(), lflt1.span().dist_byte());
-
- size_t IC = lflt1[0], CHL_MUL = lflt1[1], FSIZE = lflt1[3] * lflt1[4];
-
- double tot_err = 0, tot_err_num = 0;
- for (size_t i = 0; i < IC; ++i) {
- for (size_t j = 0; j < CHL_MUL; ++j) {
- auto t0 = p0 + ((i * CHL_MUL + j) * IC + i) * FSIZE,
- t1 = p1 + (i * CHL_MUL + j) * FSIZE;
- for (size_t k = 0; k < FSIZE; ++k) {
- auto err = std::abs(diff(t0[k], t1[k]));
- tot_err += err;
- tot_err_num += 1;
- ASSERT_LT(err, 1e-2) << "failed at " << i << " " << j << " " << k
- << " vals=" << t0[k] << "," << t1[k];
- }
- }
- }
- auto avg_err = tot_err / tot_err_num;
- ASSERT_LT(avg_err, 1e-4);
- }
- };
-
- } // anonymous namespace
-
- constexpr auto M = Convolution::Mode::CROSS_CORRELATION;
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD) {
- Checker<Convolution> checker(handle_cuda());
- bool require_algo = false;
- checker.set_before_exec_callback(AlgoChecker<ConvolutionForward>(
- ExecutionPolicyAlgoName{
- "DEFAULT",
- {{ConvBiasForward::algo_name<ConvBiasForward::DirectParam>(
- "CHANNEL_WISE", {})
- .c_str(),
- {}}}},
- &require_algo));
-
- for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()}) {
- checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype);
- if (dtype.enumv() == DTypeEnum::Float16)
- checker.set_epsilon(2e-2);
-
- // simple case
- // clang-format off
- for (uint32_t s : {1, 2})
- for (uint32_t p : {0, 1, 2, 3})
- for (size_t f : {2, 3, 5, 7})
- for (size_t ocpg : {1, 3}) {
- checker.set_param(gconv_param({M, p, p, s, s}))
- .execs({{2, 3, 16, 16}, {3, ocpg, 1, f, f}, {}});
- }
- // clang-format on
-
- checker.set_param(gconv_param({M, 2, 3, 2, 1}))
- .execs({{32, 12, 20, 10}, {12, 2, 1, 4, 5}, {}});
-
- // padding larger than kern
- checker.set_param(gconv_param({M, 20, 30, 4, 5}))
- .execs({{32, 12, 20, 10}, {12, 2, 1, 4, 5}, {}});
- }
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_SMALL) {
- Checker<Convolution> checker(handle_cuda());
- bool require_algo = false;
- checker.set_before_exec_callback(AlgoChecker<ConvolutionForward>(
- ExecutionPolicyAlgoName{
- "DEFAULT",
- {{ConvBiasForward::algo_name<ConvBiasForward::DirectParam>(
- "CHANNEL_WISE_SMALL", {})
- .c_str(),
- {}}}},
- &require_algo));
- for (auto dtype : std::vector<DType> {
- dtype::Float32(),
- #if CUDA_VERSION >= 9000
- dtype::Float16()
- #endif
- }) {
- checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype);
- if (dtype.enumv() == DTypeEnum::Float16)
- checker.set_epsilon(2e-2);
-
- // clang-format off
- for (uint32_t s : {1})
- for (uint32_t f : {1, 3, 5, 7}) {
- checker.set_param(gconv_param({M, f / 2, f / 2, s, s}))
- .execs({{2, 3, 16, 16}, {3, 1, 1, f, f}, {}});
- }
- // clang-format on
- checker.set_param(gconv_param({M, 1, 1, 1, 1}))
- .execs({{2, 3, 3, 16}, {3, 1, 1, 3, 3}, {}})
- .execs({{2, 3, 8, 3}, {3, 1, 1, 3, 3}, {}});
- }
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_DATA) {
- Checker<ConvolutionBackwardData> checker(handle_cuda());
- bool require_algo = false;
- checker.set_before_exec_callback(
- AlgoChecker<ConvolutionBackwardData>("CHANNEL_WISE", &require_algo));
-
- for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()}) {
- checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype);
- if (dtype.enumv() == DTypeEnum::Float16)
- checker.set_epsilon(1e-1);
- // simple case
- // clang-format off
- for (uint32_t s : {1, 2})
- for (uint32_t p : {0, 1, 2, 3})
- for (size_t f : {1, 2, 3, 5, 7})
- for (size_t ocpg : {1, 3}) {
- size_t ii = infer_conv_shape(16, f, s, p, true);
- checker.set_param(gconv_param({M, p, p, s, s}))
- .execs({{3, ocpg, 1, f, f},
- {2, 3 * ocpg, ii, ii},
- {2, 3, 16, 16}});
- }
- // clang-format on
-
- checker.set_param(gconv_param({M, 2, 3, 2, 1}))
- .execs({{12, 3, 1, 4, 5}, {32, 36, 20, 10}, {32, 12, 39, 8}});
- checker.set_param(gconv_param({M, 30, 20, 5, 4}))
- .execs({{6, 2, 1, 5, 4}, {32, 12, 12, 10}, {32, 6, 3, 2}});
- checker.set_param(gconv_param({M, 20, 30, 4, 5}))
- .execs({{6, 2, 1, 4, 5}, {32, 12, 10, 12}, {32, 6, 2, 3}});
- }
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_DATA_SMALL) {
- Checker<ConvolutionBackwardData> checker(handle_cuda());
- bool require_algo = false;
- checker.set_before_exec_callback(
- AlgoChecker<ConvolutionBackwardData>("CHANNEL_WISE_SMALL", &require_algo));
- for (auto dtype : std::vector<DType> {
- dtype::Float32(),
- #if CUDA_VERSION >= 9000
- dtype::Float16()
- #endif
- }) {
- checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype);
-
- if (dtype.enumv() == DTypeEnum::Float16)
- checker.set_epsilon(2e-2);
-
- for (uint32_t f : {1, 3, 5, 7}) {
- checker.set_param(gconv_param({M, f / 2, f / 2, 1, 1}))
- .execs({{3, 1, 1, f, f}, {2, 3, 16, 16}, {2, 3, 16, 16}});
- }
- checker.set_param(gconv_param({M, 1, 1, 1, 1}))
- .execs({{3, 1, 1, 3, 3}, {2, 3, 3, 16}, {2, 3, 3, 16}})
- .execs({{3, 1, 1, 3, 3}, {2, 3, 8, 3}, {2, 3, 8, 3}});
- }
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_FILTER) {
- Checker<ConvolutionBackwardFilter> checker(handle_cuda());
- bool require_algo = false;
- checker.set_before_exec_callback(
- AlgoChecker<ConvolutionBackwardFilter>("CHANNEL_WISE", &require_algo));
- UniformFloatRNG rng(-0.1, 0.1);
- for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()}) {
- checker.set_dtype(0, dtype)
- .set_dtype(1, dtype)
- .set_dtype(2, dtype)
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- if (dtype.enumv() == DTypeEnum::Float16)
- checker.set_epsilon(2e-1);
- // simple case
- // clang-format off
- for (uint32_t s : {1, 2})
- for (uint32_t p : {0, 1, 2, 3})
- for (uint32_t f : {1, 2, 3, 5, 7})
- for (uint32_t ocpg : {1, 3})
- for (uint32_t i : {8, 16, 32, 64}){
- size_t ii = infer_conv_shape(i, f, s, p, true);
- checker.set_param(gconv_param({M, p, p, s, s}))
- .execs({{2, 3, i, i},
- {2, 3 * ocpg, ii, ii},
- {3, ocpg, 1, f, f}});
- }
- // clang-format on
-
- // padding larger than kern
- checker.set_param(gconv_param({M, 20, 30, 4, 5}))
- .execs({{32, 6, 2, 3}, {32, 12, 10, 12}, {6, 2, 1, 4, 5}});
- // unused filter items
- checker.set_param(gconv_param({M, 2, 3, 2, 3}))
- .execs({{32, 6, 1, 1}, {32, 12, 1, 1}, {6, 2, 1, 5, 7}});
- }
- }
-
- namespace {
- template <typename Op>
- struct AlgoCheckerMaker {
- static auto make(const char* name, bool* require_algo) {
- return AlgoChecker<Op>(name, require_algo);
- }
- };
-
- template <>
- struct AlgoCheckerMaker<ConvolutionForward> {
- static auto make(const char* name, bool* require_algo) {
- return AlgoChecker<ConvolutionForward>(
- ExecutionPolicyAlgoName{
- "DEFAULT",
- {{ConvBiasForward::algo_name<ConvBiasForward::DirectParam>(
- name, {})
- .c_str(),
- {}}}},
- require_algo);
- }
- };
-
- template <typename Op>
- void check_chanwise(DType io_type, DType comp_type, Handle* handle, const char* name) {
- Checker<Op> checker(handle);
- bool require_algo = false;
- checker.set_before_exec_callback(AlgoCheckerMaker<Op>::make(name, &require_algo));
- checker.set_dtype(0, io_type).set_dtype(1, io_type).set_dtype(2, io_type);
- bool io16xc32 = false;
- if (io_type == dtype::Float16()) {
- if (comp_type == dtype::Float16()) {
- checker.set_epsilon(1e-1);
- } else {
- io16xc32 = true;
- }
- }
- // dispatch testcase by operation
- if (std::is_same<Op, ConvolutionForward>::value) {
- // align 8
- checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32))
- .execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}});
- // align 1
- checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32))
- .execs({{8, 2, 15, 15}, {2, 1, 1, 15, 15}, {}});
- // align 2
- checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32))
- .execs({{8, 2, 14, 14}, {2, 1, 1, 15, 15}, {}});
- // custom padding
- checker.set_param(gconv_param({M, 3, 3, 1, 1}, io16xc32))
- .execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}});
- // custom stride
- checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32))
- .execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}});
- } else if (std::is_same<Op, ConvolutionBackwardData>::value) {
- // align 8
- checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32))
- .execs({{2, 1, 1, 15, 15}, {8, 2, 16, 16}, {8, 2, 16, 16}});
- // align 1
- checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32))
- .execs({{2, 1, 1, 15, 15}, {8, 2, 15, 15}, {8, 2, 15, 15}});
- // align 2
- checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32))
- .execs({{2, 1, 1, 15, 15}, {8, 2, 14, 14}, {8, 2, 14, 14}});
- // custom padding
- checker.set_param(gconv_param({M, 3, 3, 1, 1}, io16xc32))
- .execs({{2, 1, 1, 15, 15}, {8, 2, 8, 8}, {8, 2, 16, 16}});
- // custom stride
- checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32))
- .execs({{2, 1, 1, 15, 15}, {8, 2, 7, 7}, {8, 2, 14, 14}});
- } else if (std::is_same<Op, ConvolutionBackwardFilter>::value) {
- // align 8
- checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32))
- .execs({{8, 2, 16, 16}, {8, 2, 16, 16}, {2, 1, 1, 15, 15}});
- // align 1
- checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32))
- .execs({{8, 2, 15, 15}, {8, 2, 15, 15}, {2, 1, 1, 15, 15}});
- // align 2
- checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32))
- .execs({{8, 2, 14, 14}, {8, 2, 14, 14}, {2, 1, 1, 15, 15}});
- // custom padding
- checker.set_param(gconv_param({M, 3, 3, 1, 1}, io16xc32))
- .execs({{8, 2, 16, 16}, {8, 2, 8, 8}, {2, 1, 1, 15, 15}});
- // custom stride
- checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32))
- .execs({{8, 2, 14, 14}, {8, 2, 7, 7}, {2, 1, 1, 15, 15}});
- }
- }
- } // namespace
-
- #define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) \
- cb(1, 128, 128, 8, 32, 64, 8); \
- cb(2, 128, 64, 8, 64, 32, 8); \
- cb(3, 128, 32, 8, 64, 32, 8); \
- cb(4, 64, 128, 8, 32, 64, 8); \
- cb(5, 32, 128, 8, 32, 64, 8); \
- cb(6, 64, 64, 8, 32, 64, 8); \
- cb(7, 32, 64, 8, 32, 64, 8); \
- cb(8, 32, 32, 8, 32, 32, 8); \
- cb(9, 64, 32, 8, 64, 32, 8);
-
- #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \
- TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_CUTLASS_FMA_##tag) { \
- require_compute_capability(6, 1); \
- check_chanwise<ConvolutionForward>( \
- dtype::Float32(), dtype::Float32(), handle_cuda(), \
- "FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \
- "_" #wm "X" #wn "X" #wk "_2stage"); \
- }
-
- MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb)
-
- #undef cb
-
- #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_DATA_CUTLASS_FMA_##tag) { \
- require_compute_capability(6, 1); \
- check_chanwise<ConvolutionBackwardData>( \
- dtype::Float32(), dtype::Float32(), handle_cuda(), \
- "FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \
- "_" #wm "X" #wn "X" #wk "_2stage"); \
- }
-
- MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb)
-
- #undef cb
-
- #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_FILTER_CUTLASS_FMA_##tag) { \
- require_compute_capability(6, 1); \
- check_chanwise<ConvolutionBackwardFilter>( \
- dtype::Float32(), dtype::Float32(), handle_cuda(), \
- "FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \
- "_" #wm "X" #wn "X" #wk "_2stage"); \
- }
-
- MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb)
-
- #undef cb
-
- #undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL
-
- #if CUDA_VERSION >= 10010
- #define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) \
- cb(1, 128, 128, 32, 32, 32, 32); \
- cb(2, 128, 256, 32, 64, 64, 32); \
- cb(3, 128, 64, 32, 32, 32, 32); \
- cb(4, 64, 128, 32, 32, 32, 32); \
- cb(5, 64, 64, 32, 32, 32, 32);
- #else
- // hmma instruction need cuda version >= 10.2, disable hmma testcases in this path
- #define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb)
- #endif
-
- // check both ioc16 and io16xc32
- #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \
- TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_CUTLASS_HMMA_##tag) { \
- require_compute_capability(7, 0); \
- check_chanwise<ConvolutionForward>( \
- dtype::Float16(), dtype::Float16(), handle_cuda(), \
- "FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \
- "_" #wm "X" #wn "X" #wk "_2stage"); \
- check_chanwise<ConvolutionForward>( \
- dtype::Float16(), dtype::Float32(), handle_cuda(), \
- "FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \
- "_" #wm "X" #wn "X" #wk "_2stage"); \
- }
-
- MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb)
-
- #undef cb
-
- #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_DATA_CUTLASS_HMMA_##tag) { \
- require_compute_capability(7, 0); \
- check_chanwise<ConvolutionBackwardData>( \
- dtype::Float16(), dtype::Float16(), handle_cuda(), \
- "FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \
- "_" #wm "X" #wn "X" #wk "_mma8X8X4_2stage"); \
- check_chanwise<ConvolutionBackwardData>( \
- dtype::Float16(), dtype::Float32(), handle_cuda(), \
- "FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \
- "_" #wm "X" #wn "X" #wk "_mma8X8X4_2stage"); \
- }
-
- MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb)
-
- #undef cb
-
- #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_FILTER_CUTLASS_HMMA_##tag) { \
- require_compute_capability(7, 0); \
- check_chanwise<ConvolutionBackwardData>( \
- dtype::Float16(), dtype::Float32(), handle_cuda(), \
- "FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \
- "_" #wm "X" #wn "X" #wk "_mma8X8X4_2stage"); \
- }
-
- MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb)
-
- #undef cb
-
- #undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_BENCH_CHECK) {
- auto handle = handle_cuda();
- auto handle_cpu = handle_naive();
- auto conv0 = handle->create_operator<ConvolutionForward>();
- auto conv1 = handle->create_operator<ConvolutionForward>();
- BenchmarkEnv<0, 1, 2> benv(handle, handle_cpu);
-
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t CHL_MUL, size_t FH,
- size_t FW, size_t PH, size_t PW) {
- benv.alloc(N, IC, IH, IW, CHL_MUL, FH, FW, PH, PW);
- benv.fill_src();
- benv.fill_flt();
- benv.exec_convolution(conv0.get(), conv1.get());
- benv.cmp_dst();
- };
-
- run(64, 60, 50, 50, 1, 3, 3, 1, 1);
- if (check_need_full_bench()) {
- run(64, 728, 18, 18, 2, 5, 5, 2, 2);
- run(64, 64, 150, 150, 2, 3, 3, 1, 1);
- run(1, 2048, 4, 4, 2, 3, 3, 1, 1);
- }
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BWD_DATA_BENCH_CHECK) {
- auto handle = handle_cuda();
- auto handle_cpu = handle_naive();
- auto conv0 = handle->create_operator<ConvolutionBackwardData>();
- auto conv1 = handle->create_operator<ConvolutionBackwardData>();
- BenchmarkEnv<1, 2, 0> benv(handle, handle_cpu);
-
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t CHL_MUL, size_t FH,
- size_t FW, size_t PH, size_t PW) {
- benv.alloc(N, IC, IH, IW, CHL_MUL, FH, FW, PH, PW);
- benv.fill_dst();
- benv.fill_flt();
- benv.exec(conv0.get(), conv1.get());
- benv.cmp_src();
- };
-
- run(64, 60, 50, 50, 1, 3, 3, 1, 1);
- if (check_need_full_bench()) {
- run(64, 728, 18, 18, 2, 5, 5, 2, 2);
- run(64, 64, 150, 150, 2, 3, 3, 1, 1);
- run(1, 2048, 4, 4, 2, 3, 3, 1, 1);
- }
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BWD_FILTER_BENCH_CHECK) {
- auto handle = handle_cuda();
- auto handle_cpu = handle_naive();
- auto conv0 = handle->create_operator<ConvolutionBackwardFilter>();
- auto conv1 = handle->create_operator<ConvolutionBackwardFilter>();
- BenchmarkEnv<0, 2, 1> benv(handle, handle_cpu);
-
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t CHL_MUL, size_t FH,
- size_t FW, size_t PH, size_t PW) {
- benv.alloc(N, IC, IH, IW, CHL_MUL, FH, FW, PH, PW);
- benv.fill_src();
- benv.fill_dst();
- benv.exec(conv0.get(), conv1.get());
- benv.cmp_flt();
- };
-
- run(64, 60, 50, 50, 1, 3, 3, 1, 1);
- if (check_need_full_bench()) {
- run(64, 728, 18, 18, 2, 5, 5, 2, 2);
- run(64, 64, 150, 150, 2, 3, 3, 1, 1);
- run(1, 2048, 4, 4, 2, 3, 3, 1, 1);
- }
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BENCH_ALL_ALGO_FWD) {
- // enable profiling
- std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
- new OprProxy<ConvolutionForward>{true}};
- proxy->warmup_times = 1;
- proxy->exec_times = 10;
- Benchmarker<ConvolutionForward> checker(handle_cuda());
- checker.set_times(1);
- ConvolutionForward::Param param;
- param.sparse = ConvolutionForward::Param::Sparse::GROUP;
- checker.set_param(param);
- checker.set_proxy(proxy);
-
- auto run = [&](size_t N, size_t C, size_t IH, size_t IW, size_t FH, size_t FW) {
- checker.proxy()->target_execution_policy = {};
- checker.execs({{N, C, IH, IW}, {C, 1, 1, FH, FW}, {}});
- };
-
- run(128, 64, 90, 80, 3, 3);
- run(128, 90, 100, 100, 3, 5);
- run(128, 32, 62, 62, 5, 5);
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BENCH_ALL_ALGO_BWD_DATA) {
- // enable profiling
- std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
- new OprProxy<ConvolutionBackwardData>{true}};
- proxy->warmup_times = 1;
- proxy->exec_times = 10;
- Benchmarker<ConvolutionBackwardData> checker(handle_cuda());
- checker.set_times(1);
- ConvolutionBackwardData::Param param;
- param.sparse = ConvolutionForward::Param::Sparse::GROUP;
- checker.set_param(param);
- checker.set_proxy(proxy);
-
- auto run = [&](size_t N, size_t C, size_t IH, size_t IW, size_t FH, size_t FW) {
- checker.proxy()->target_execution_policy.algo.reset();
- checker.execs(
- {{C, 1, 1, FH, FW}, {N, C, IH - FH + 1, IW - FW + 1}, {N, C, IH, IW}});
- };
-
- run(128, 64, 90, 80, 3, 3);
- run(128, 90, 100, 100, 3, 5);
- run(128, 32, 62, 62, 5, 5);
- }
-
- TEST_F(CUDA, CHANWISE_CONVOLUTION_BENCH_ALL_ALGO_BWD_FILTER) {
- // enable profiling
- std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
- new OprProxy<ConvolutionBackwardFilter>{true}};
- proxy->warmup_times = 1;
- proxy->exec_times = 10;
- Benchmarker<ConvolutionBackwardFilter> checker(handle_cuda());
- checker.set_times(1);
- ConvolutionBackwardFilter::Param param;
- param.sparse = ConvolutionForward::Param::Sparse::GROUP;
- checker.set_param(param);
- checker.set_proxy(proxy);
-
- auto run = [&](size_t N, size_t C, size_t IH, size_t IW, size_t FH, size_t FW) {
- checker.proxy()->target_execution_policy.algo.reset();
- checker.execs(
- {{N, C, IH, IW}, {N, C, IH - FH + 1, IW - FW + 1}, {C, 1, 1, FH, FW}});
- };
-
- run(128, 64, 90, 80, 3, 3);
- run(128, 90, 100, 100, 3, 5);
- run(128, 32, 62, 62, 5, 5);
- }
-
- TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_ALL_ALGO_FORWARD) {
- CUBenchmarker<ConvolutionForward> bencher(handle_cuda());
- size_t RUNS = 10;
- bencher.set_display(false).set_times(RUNS);
- std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
- new OprProxy<ConvolutionForward>{true}};
- bencher.set_proxy(proxy);
-
- Convolution::Param param;
- param.format = ConvBias::Param::Format::NCHW;
- param.sparse = Convolution::Param::Sparse::GROUP;
- NormalRNG rng;
-
- auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) {
- param.pad_h = f / 2;
- param.pad_w = f / 2;
- param.stride_h = s;
- param.stride_w = s;
- param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
-
- TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f};
-
- TensorLayout dst_layout;
- auto opr = handle_cuda()->create_operator<Convolution>();
- opr->param() = param;
- opr->deduce_layout(
- {src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout);
- float bandwith = static_cast<float>(
- src.total_nr_elems() + filter.total_nr_elems() +
- dst_layout.total_nr_elems()) /
- (1024 * 1024 * 1024) * 1e3;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- bencher.proxy()->target_execution_policy = {};
- auto time_in_ms_fp32 = bencher.execs({src, filter, {}}) / RUNS;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- bencher.proxy()->target_execution_policy = {};
- auto time_in_ms_fp16 = bencher.execs({src, filter, {}}) / RUNS;
-
- bencher.proxy()->target_execution_policy.algo.reset();
- param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
- bencher.set_param(param);
- auto time_in_ms_pseudo_fp16 = bencher.execs({src, filter, {}}) / RUNS;
-
- printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s "
- "float16: %.2fms %.2fGB/s "
- "pseudo float16: %.2fms %.2fGB/s "
- "speedup: "
- "%0.2f (fp16/fp32) %.2f (fp16/pseudo fp16)\n",
- s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32,
- bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16,
- bandwith * 2 / time_in_ms_fp16, time_in_ms_pseudo_fp16,
- bandwith * 2 / time_in_ms_pseudo_fp16, time_in_ms_fp32 / time_in_ms_fp16,
- time_in_ms_pseudo_fp16 / time_in_ms_fp16);
- };
-
- // clang-format off
- for (size_t s : {1, 2})
- for (size_t f : {3, 5, 7})
- for (size_t batch : {64})
- for (size_t c : {16, 32, 64, 128})
- for (size_t ih: {128, 256})
- for (size_t iw : {128, 256})
- run(batch, c, ih, iw, f, s);
- // clang-format on
-
- run(128, 192, 28, 28, 3, 1);
- run(128, 192, 28, 28, 3, 2);
- run(128, 576, 14, 14, 3, 1);
- run(128, 384, 14, 14, 3, 1);
- run(128, 32, 112, 112, 3, 1);
- run(128, 960, 7, 7, 3, 1);
- run(128, 384, 14, 14, 3, 1);
- run(128, 144, 56, 56, 3, 2);
- run(128, 384, 14, 14, 3, 1);
- run(128, 144, 56, 56, 3, 1);
- run(128, 96, 112, 112, 3, 2);
- run(128, 384, 14, 14, 3, 1);
- run(128, 192, 28, 28, 3, 1);
- run(128, 576, 14, 14, 3, 1);
- run(128, 576, 14, 14, 3, 2);
- }
-
- TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_FORWARD_FLOAT) {
- CUBenchmarker<ConvolutionForward> bencher(handle_cuda());
- size_t RUNS = 1;
- bencher.set_display(false).set_times(RUNS);
- bencher.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>(ExecutionPolicyAlgoName{
- "DEFAULT",
- {{ConvBiasForward::algo_name<ConvBiasForward::DirectParam>(
- "CHANNEL_WISE", {})
- .c_str(),
- {}}}}));
-
- Convolution::Param param;
- param.format = ConvBias::Param::Format::NCHW;
- param.sparse = Convolution::Param::Sparse::GROUP;
- NormalRNG rng;
-
- auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) {
- param.pad_h = f / 2;
- param.pad_w = f / 2;
- param.stride_h = s;
- param.stride_w = s;
- param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
-
- TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f};
-
- TensorLayout dst_layout;
- auto opr = handle_cuda()->create_operator<Convolution>();
- opr->param() = param;
- opr->deduce_layout(
- {src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout);
- float bandwith = static_cast<float>(
- src.total_nr_elems() + filter.total_nr_elems() +
- dst_layout.total_nr_elems()) /
- (1024 * 1024 * 1024) * 1e3;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- auto time_in_ms_fp32 = bencher.execs({src, filter, {}}) / RUNS;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- auto time_in_ms_fp16 = bencher.execs({src, filter, {}}) / RUNS;
-
- printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s "
- "float16: %.2fms %.2fGB/s "
- "speedup: "
- "%0.2f (fp16/fp32)\n",
- s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32,
- bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16,
- bandwith * 2 / time_in_ms_fp16, time_in_ms_fp32 / time_in_ms_fp16);
- };
-
- // clang-format off
- for (size_t s : {1})
- for (size_t f : {3, 5, 7})
- for (size_t batch : {64})
- for (size_t c : {16, 32, 64, 128})
- for (size_t ih: {8, 16, 32, 128, 256})
- for (size_t iw : {8, 16, 32, 128, 256})
- run(batch, c, ih, iw, f, s);
- // clang-format on
- }
-
- TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_FORWARD_FLOAT_SMALL) {
- CUBenchmarker<ConvolutionForward> bencher(handle_cuda());
- size_t RUNS = 1;
- bencher.set_display(false).set_times(RUNS);
-
- Convolution::Param param;
- param.format = ConvBias::Param::Format::NCHW;
- param.sparse = Convolution::Param::Sparse::GROUP;
- NormalRNG rng;
-
- auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) {
- param.pad_h = f / 2;
- param.pad_w = f / 2;
- param.stride_h = s;
- param.stride_w = s;
- param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
-
- TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f};
-
- TensorLayout dst_layout;
- auto opr = handle_cuda()->create_operator<Convolution>();
- opr->param() = param;
- opr->deduce_layout(
- {src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout);
- float bandwith = static_cast<float>(
- src.total_nr_elems() + filter.total_nr_elems() +
- dst_layout.total_nr_elems()) /
- (1024 * 1024 * 1024) * 1e3;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_before_exec_callback(AlgoChecker<
- ConvolutionForward>(ExecutionPolicyAlgoName{
- "DEFAULT",
- {{ConvBiasForward::algo_name<ConvBiasForward::DirectParam>(
- "CHANNEL_WISE", {})
- .c_str(),
- {}}}}));
- auto time_in_ms_fp32_normal = bencher.execs({src, filter, {}}) / RUNS;
-
- bencher.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>(ExecutionPolicyAlgoName{
- "DEFAULT",
- {{ConvBiasForward::algo_name<ConvBiasForward::DirectParam>(
- "CHANNEL_WISE", {})
- .c_str(),
- {}}}}));
-
- auto time_in_ms_fp32_small = bencher.execs({src, filter, {}}) / RUNS;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- auto time_in_ms_fp16_small = bencher.execs({src, filter, {}}) / RUNS;
-
- printf("stride=%zu src=%s, filter=%s, fp32 normal: %.2fms %.2fGB/s "
- "small: %.2fms %.2fGB/s, fp16 small: %.2fms %.2fGB/s, "
- "speedup: "
- "%0.2f (fp32 small/normal) %0.2f (small fp16/fp32)\n",
- s, src.to_string().c_str(), filter.to_string().c_str(),
- time_in_ms_fp32_normal, bandwith * 4 / time_in_ms_fp32_normal,
- time_in_ms_fp32_small, bandwith * 4 / time_in_ms_fp32_small,
- time_in_ms_fp16_small, bandwith * 2 / time_in_ms_fp16_small,
- time_in_ms_fp32_normal / time_in_ms_fp32_small,
- time_in_ms_fp32_small / time_in_ms_fp16_small);
- };
-
- // clang-format off
- for (size_t s : {1})
- for (size_t f : {3, 5})
- for (size_t batch : {64})
- for (size_t c : {16, 32, 64, 128})
- for (size_t ih: {8, 16, 32})
- for (size_t iw : {8, 16, 32})
- run(batch, c, ih, iw, f, s);
- // clang-format on
-
- run(128, 192, 28, 28, 3, 1);
- run(128, 576, 14, 14, 3, 1);
- run(128, 384, 14, 14, 3, 1);
- run(128, 960, 7, 7, 3, 1);
- run(128, 384, 14, 14, 3, 1);
- run(128, 384, 14, 14, 3, 1);
- run(128, 384, 14, 14, 3, 1);
- run(128, 192, 28, 28, 3, 1);
- run(128, 576, 14, 14, 3, 1);
- }
-
- TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_FORWARD_CUDNN_DNN) {
- CUBenchmarker<ConvBiasForward> bencher(handle_cuda());
- size_t RUNS = 1;
- bencher.set_display(false).set_times(RUNS);
-
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW;
- param.sparse = ConvBias::Param::Sparse::GROUP;
- NormalRNG rng;
-
- auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) {
- param.pad_h = f / 2;
- param.pad_w = f / 2;
- param.stride_h = s;
- param.stride_w = s;
- param.compute_mode = param::ConvBias::ComputeMode::DEFAULT;
-
- TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f},
- bias = {1, c, 1, 1};
-
- TensorLayout dst_layout;
- auto opr = handle_cuda()->create_operator<ConvBias>();
- opr->param() = param;
- opr->deduce_layout(
- {src, dtype::Float32()}, {filter, dtype::Float32()},
- {bias, dtype::Float32()}, {}, dst_layout);
- float computation_mops =
- static_cast<float>(dst_layout.total_nr_elems() * f * f * 2) * 1e-6;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- bencher.set_before_exec_callback(
- AlgoChecker<ConvBiasForward>(".+CHANNEL_WISE.+"));
- auto time_in_ms_dnn = bencher.execs({src, filter, bias, {}, {}}) / RUNS;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- bencher.set_before_exec_callback(AlgoChecker<ConvBiasForward>(
- ".+CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM.+"));
- auto time_in_ms_cudnn = bencher.execs({src, filter, bias, {}, {}}) / RUNS;
-
- printf("stride=%zu src=%s, filter=%s, dst=%s, dnn: %.2fms %.2fGB/s "
- "cudnn: %.2fms %.2fGB/s "
- "speedup: "
- "%0.2f (dnn/cudnn)\n",
- s, src.to_string().c_str(), filter.to_string().c_str(),
- dst_layout.to_string().c_str(), time_in_ms_dnn,
- computation_mops / time_in_ms_dnn, time_in_ms_cudnn,
- computation_mops / time_in_ms_cudnn, time_in_ms_cudnn / time_in_ms_dnn);
- };
-
- // clang-format off
- for(size_t batch:{1, 16, 32, 64, 128}){
- run(batch, 32, 112, 112, 3, 1);
- run(batch, 96, 112, 112, 3, 2);
- run(batch, 96, 112, 112, 3, 1);
- run(batch, 144, 56, 56, 3, 2);
- run(batch, 144, 56, 56, 3, 1);
- run(batch, 192, 28, 28, 3, 1);
- run(batch, 384, 14, 14, 3, 1);
- run(batch, 576, 14, 14, 3, 1);
- run(batch, 960, 7, 7, 3, 1);
- //! calibrate heu algo policy hw_size param
- run(batch, 144, 24, 24, 3, 1);
- run(batch, 144, 22, 22, 3, 1);
- run(batch, 144, 20, 20, 3, 1);
- run(batch, 144, 18, 18, 3, 1);
- }
- // clang-format on
- }
-
- TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BACKWARD_DATA_FLOAT_SMALL) {
- CUBenchmarker<ConvolutionBackwardData> bencher(handle_cuda());
- size_t RUNS = 1;
- bencher.set_display(false).set_times(RUNS);
-
- ConvolutionBackwardData::Param param;
- param.format = Convolution::Param::Format::NCHW;
- param.sparse = Convolution::Param::Sparse::GROUP;
- NormalRNG rng;
-
- auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) {
- param.pad_h = f / 2;
- param.pad_w = f / 2;
- param.stride_h = s;
- param.stride_w = s;
- param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
-
- TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f};
- float bandwith = static_cast<float>(
- src.total_nr_elems() + filter.total_nr_elems() +
- src.total_nr_elems()) /
- (1024 * 1024 * 1024) * 1e3;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_before_exec_callback(
- AlgoChecker<ConvolutionBackwardData>("CHANNEL_WISE"));
- auto time_in_ms_fp32_normal = bencher.execs({filter, src, src}) / RUNS;
-
- bencher.set_before_exec_callback(
- AlgoChecker<ConvolutionBackwardData>("CHANNEL_WISE_SMALL"));
- auto time_in_ms_fp32_small = bencher.execs({filter, src, src}) / RUNS;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- auto time_in_ms_fp16_small = bencher.execs({filter, src, src}) / RUNS;
-
- printf("stride=%zu src=%s, filter=%s, fp32 normal: %.2fms %.2fGB/s "
- "small: %.2fms %.2fGB/s, fp16 small: %.2fms %.2fGB/s, "
- "speedup: "
- "%0.2f (fp32 small/normal) %0.2f (small fp16/fp32)\n",
- s, src.to_string().c_str(), filter.to_string().c_str(),
- time_in_ms_fp32_normal, bandwith * 4 / time_in_ms_fp32_normal,
- time_in_ms_fp32_small, bandwith * 4 / time_in_ms_fp32_small,
- time_in_ms_fp16_small, bandwith * 2 / time_in_ms_fp16_small,
- time_in_ms_fp32_normal / time_in_ms_fp32_small,
- time_in_ms_fp32_small / time_in_ms_fp16_small);
- };
-
- // clang-format off
- for (size_t s : {1})
- for (size_t f : {3, 5})
- for (size_t batch : {64})
- for (size_t c : {16, 32, 64, 128})
- for (size_t ih: {8, 16, 32})
- for (size_t iw : {8, 16, 32})
- run(batch, c, ih, iw, f, s);
- // clang-format on
-
- run(128, 192, 28, 28, 3, 1);
- run(128, 576, 14, 14, 3, 1);
- run(128, 384, 14, 14, 3, 1);
- run(128, 960, 7, 7, 3, 1);
- run(128, 384, 14, 14, 3, 1);
- run(128, 384, 14, 14, 3, 1);
- run(128, 384, 14, 14, 3, 1);
- run(128, 192, 28, 28, 3, 1);
- run(128, 576, 14, 14, 3, 1);
- }
-
- TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BWD_DATA) {
- CUBenchmarker<ConvolutionBackwardData> bencher(handle_cuda());
- size_t RUNS = 1;
- bencher.set_display(false).set_times(RUNS);
- bencher.set_before_exec_callback(
- AlgoChecker<ConvolutionBackwardData>("CHANNEL_WISE"));
-
- Convolution::Param param;
- param.format = ConvBias::Param::Format::NCHW;
- param.sparse = Convolution::Param::Sparse::GROUP;
- NormalRNG rng;
-
- auto run = [&](size_t batch, size_t ocpg, size_t group, size_t ih, size_t iw,
- size_t f, size_t p, size_t s) {
- param.pad_h = p;
- param.pad_w = p;
- param.stride_h = s;
- param.stride_w = s;
- size_t oh, ow;
- infer_conv_shape2d(ih, iw, f, f, s, s, p, p, oh, ow, true);
- param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
-
- TensorShape src_grad = {batch, group, ih, iw},
- dst_grad = {batch, group * ocpg, oh, ow},
- flt = {group, ocpg, 1, f, f};
-
- auto opr = handle_cuda()->create_operator<Convolution>();
- opr->param() = param;
- float bandwith = static_cast<float>(
- flt.total_nr_elems() + dst_grad.total_nr_elems() +
- src_grad.total_nr_elems()) /
- (1024 * 1024 * 1024) * 1e3;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- auto time_in_ms_fp32 = bencher.execs({flt, dst_grad, src_grad}) / RUNS;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- auto time_in_ms_fp16 = bencher.execs({flt, dst_grad, src_grad}) / RUNS;
-
- printf("stride=%zu, src_grad=%s, flt=%s, "
- "float32: %.2fms %.2fGB/s "
- "float16: %.2fms %.2fGB/s "
- "speedup: "
- "%0.2f (fp16/fp32)\n",
- s, src_grad.to_string().c_str(), flt.to_string().c_str(),
- time_in_ms_fp32, bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16,
- bandwith * 2 / time_in_ms_fp16, time_in_ms_fp32 / time_in_ms_fp16);
- };
-
- // clang-format off
- for (size_t s : {1, 2})
- for (size_t f : {3, 5, 7})
- for (size_t p : {f / 2})
- for (size_t batch : {64})
- for (size_t ocpg : {1})
- for (size_t group : {16, 32, 64, 128})
- for (size_t ih : {8, 16, 32, 128, 256})
- for (size_t iw : {8, 16, 32, 128, 256})
- run(batch, ocpg, group, ih, iw, f, p, s);
- // clang-format on
- }
-
- TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BWD_FILTER) {
- CUBenchmarker<ConvolutionBackwardFilter> bencher(handle_cuda());
- size_t RUNS = 1;
- bencher.set_display(false).set_times(RUNS);
- bencher.set_before_exec_callback(
- AlgoChecker<ConvolutionBackwardFilter>("CHANNEL_WISE"));
-
- Convolution::Param param;
- param.format = ConvBias::Param::Format::NCHW;
- param.sparse = Convolution::Param::Sparse::GROUP;
- NormalRNG rng;
-
- auto run = [&](size_t batch, size_t ocpg, size_t group, size_t i, size_t f,
- size_t p, size_t s) {
- param.pad_h = p;
- param.pad_w = p;
- param.stride_h = s;
- param.stride_w = s;
- size_t d = infer_conv_shape(i, f, s, p, true);
- param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
-
- TensorShape src = {batch, group, i, i}, dst_grad = {batch, group * ocpg, d, d},
- flt_grad = {group, ocpg, 1, f, f};
-
- auto opr = handle_cuda()->create_operator<Convolution>();
- opr->param() = param;
- float bandwith = static_cast<float>(
- flt_grad.total_nr_elems() + dst_grad.total_nr_elems() +
- src.total_nr_elems()) /
- (1024 * 1024 * 1024) * 1e3;
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- auto time_in_ms_fp32 = bencher.execs({src, dst_grad, flt_grad}) / RUNS;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- auto time_in_ms_fp16 = bencher.execs({src, dst_grad, flt_grad}) / RUNS;
-
- printf("stride=%zu, src=%s, flt_grad=%s, "
- "float32: %.2fms %.2fGB/s "
- "float16: %.2fms %.2fGB/s "
- "speedup: "
- "%.2f (fp16/fp32)\n",
- s, src.to_string().c_str(), flt_grad.to_string().c_str(),
- time_in_ms_fp32, bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16,
- bandwith * 2 / time_in_ms_fp16, time_in_ms_fp32 / time_in_ms_fp16);
- };
-
- // clang-format off
- for (size_t s : {1, 2})
- for (size_t f : {3, 5, 7})
- for (size_t p : {f / 2})
- for (size_t batch : {64})
- for (size_t ocpg : {1})
- for (size_t group : {16, 32, 64, 128})
- for (size_t i : {8, 16, 32, 64, 128})
- run(batch, ocpg, group, i, f, p, s);
- // clang-format on
- }
-
- TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_FORWARD_LARGE_KERNEL) {
- CUBenchmarker<ConvolutionForward> bencher(handle_cuda());
- size_t RUNS = 100;
- bencher.set_display(false).set_times(RUNS);
- std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
- new OprProxy<ConvolutionForward>{true}};
- bencher.set_proxy(proxy);
-
- Convolution::Param param;
- param.format = ConvBias::Param::Format::NCHW;
- param.sparse = Convolution::Param::Sparse::GROUP;
- NormalRNG rng;
-
- auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) {
- param.pad_h = f / 2;
- param.pad_w = f / 2;
- param.stride_h = s;
- param.stride_w = s;
- param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
-
- TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f};
-
- TensorLayout dst_layout;
- auto opr = handle_cuda()->create_operator<Convolution>();
- opr->param() = param;
- opr->deduce_layout(
- {src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout);
- float bandwith = static_cast<float>(
- src.total_nr_elems() + filter.total_nr_elems() +
- dst_layout.total_nr_elems()) /
- (1024 * 1024 * 1024) * 1e3;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- bencher.proxy()->target_execution_policy = {};
- auto time_in_ms_fp32 = bencher.execs({src, filter, {}}) / RUNS;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- bencher.proxy()->target_execution_policy = {};
- auto time_in_ms_fp16 = bencher.execs({src, filter, {}}) / RUNS;
-
- bencher.proxy()->target_execution_policy.algo.reset();
- param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
- bencher.set_param(param);
- auto time_in_ms_pseudo_fp16 = bencher.execs({src, filter, {}}) / RUNS;
-
- printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s "
- "float16: %.2fms %.2fGB/s "
- "pseudo float16: %.2fms %.2fGB/s "
- "speedup: "
- "%0.2f (fp16/fp32) %.2f (fp16/pseudo fp16)\n",
- s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32,
- bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16,
- bandwith * 2 / time_in_ms_fp16, time_in_ms_pseudo_fp16,
- bandwith * 2 / time_in_ms_pseudo_fp16, time_in_ms_fp32 / time_in_ms_fp16,
- time_in_ms_pseudo_fp16 / time_in_ms_fp16);
- };
-
- // clang-format off
- for (size_t b : {32, 64})
- for (size_t f : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}) {
- run(b, 384, 32, 32, f, 1);
- run(b, 384, 64, 64, f, 1);
- }
- // clang-format on
- }
-
- TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BACKWARD_DATA_LARGE_KERNEL) {
- CUBenchmarker<ConvolutionBackwardData> bencher(handle_cuda());
- size_t RUNS = 100;
- bencher.set_display(false).set_times(RUNS);
- std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
- new OprProxy<ConvolutionBackwardData>{true}};
- bencher.set_proxy(proxy);
-
- Convolution::Param param;
- param.format = ConvBias::Param::Format::NCHW;
- param.sparse = Convolution::Param::Sparse::GROUP;
- NormalRNG rng;
-
- auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) {
- param.pad_h = f / 2;
- param.pad_w = f / 2;
- param.stride_h = s;
- param.stride_w = s;
- param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
-
- TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f};
-
- TensorLayout dst_layout;
- auto opr = handle_cuda()->create_operator<Convolution>();
- opr->param() = param;
- opr->deduce_layout(
- {src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout);
- float bandwith = static_cast<float>(
- src.total_nr_elems() + filter.total_nr_elems() +
- dst_layout.total_nr_elems()) /
- (1024 * 1024 * 1024) * 1e3;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- bencher.proxy()->target_execution_policy = {};
- auto time_in_ms_fp32 = bencher.execs({filter, src, src}) / RUNS;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- bencher.proxy()->target_execution_policy = {};
- auto time_in_ms_fp16 = bencher.execs({filter, src, src}) / RUNS;
-
- bencher.proxy()->target_execution_policy.algo.reset();
- param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
- bencher.set_param(param);
- auto time_in_ms_pseudo_fp16 = bencher.execs({filter, src, src}) / RUNS;
-
- printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s "
- "float16: %.2fms %.2fGB/s "
- "pseudo float16: %.2fms %.2fGB/s "
- "speedup: "
- "%0.2f (fp16/fp32) %.2f (fp16/pseudo fp16)\n",
- s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32,
- bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16,
- bandwith * 2 / time_in_ms_fp16, time_in_ms_pseudo_fp16,
- bandwith * 2 / time_in_ms_pseudo_fp16, time_in_ms_fp32 / time_in_ms_fp16,
- time_in_ms_pseudo_fp16 / time_in_ms_fp16);
- };
-
- // clang-format off
- for (size_t b : {32, 64})
- for (size_t f : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}) {
- run(b, 384, 32, 32, f, 1);
- run(b, 384, 64, 64, f, 1);
- }
- // clang-format on
- }
-
- TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BACKWARD_FILTER_LARGE_KERNEL) {
- CUBenchmarker<ConvolutionBackwardFilter> bencher(handle_cuda());
- size_t RUNS = 100;
- bencher.set_display(false).set_times(RUNS);
- std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
- new OprProxy<ConvolutionBackwardFilter>{true}};
- bencher.set_proxy(proxy);
-
- Convolution::Param param;
- param.format = ConvBias::Param::Format::NCHW;
- param.sparse = Convolution::Param::Sparse::GROUP;
- NormalRNG rng;
-
- auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) {
- param.pad_h = f / 2;
- param.pad_w = f / 2;
- param.stride_h = s;
- param.stride_w = s;
- param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
-
- TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f};
-
- TensorLayout dst_layout;
- auto opr = handle_cuda()->create_operator<Convolution>();
- opr->param() = param;
- opr->deduce_layout(
- {src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout);
- float bandwith = static_cast<float>(
- src.total_nr_elems() + filter.total_nr_elems() +
- dst_layout.total_nr_elems()) /
- (1024 * 1024 * 1024) * 1e3;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- bencher.proxy()->target_execution_policy = {};
- auto time_in_ms_fp32 = bencher.execs({src, src, filter}) / RUNS;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_rng(0, &rng)
- .set_rng(1, &rng);
- bencher.proxy()->target_execution_policy = {};
- param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
- bencher.set_param(param);
- auto time_in_ms_pseudo_fp16 = bencher.execs({src, src, filter}) / RUNS;
-
- printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s "
- "pseudo float16: %.2fms %.2fGB/s "
- "speedup: "
- "%0.2f (fp16/fp32) \n",
- s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32,
- bandwith * 4 / time_in_ms_fp32, time_in_ms_pseudo_fp16,
- bandwith * 2 / time_in_ms_pseudo_fp16,
- time_in_ms_fp32 / time_in_ms_pseudo_fp16);
- };
-
- // clang-format off
- for (size_t b : {32, 64})
- for (size_t f : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}) {
- run(b, 384, 32, 32, f, 1);
- run(b, 384, 64, 64, f, 1);
- }
- // clang-format on
- }
- #endif
-
- // vim: syntax=cpp.doxygen
|