|
- /**
- * \file dnn/test/cuda/conv_bias.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
- #include "megdnn/dtype.h"
- #include "test/cuda/fixture.h"
-
- #include "megdnn/opr_param_defs.h"
- #include "megdnn/oprs.h"
- #include "src/cuda/handle.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/conv_bias.h"
- #include "test/common/rng.h"
- #include "test/common/tensor.h"
- #include "test/common/workspace_wrapper.h"
- #include "test/cuda/utils.h"
-
- using namespace megdnn;
- using namespace test;
- using namespace conv_bias;
-
- namespace {
- #if CUDA_VERSION >= 10000
- void test_conv_bias_forward_wmma_int4_nchw8(Handle* handle_cuda, size_t fh) {
- require_compute_capability(7, 5);
- using namespace conv_bias;
- Checker<ConvBiasForward> checker(handle_cuda);
-
- UniformIntRNG int_rng{0, 8};
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW8;
-
- using NonlineMode = ConvBias::Param::NonlineMode;
- for (NonlineMode mode : {NonlineMode::RELU}) {
- for (size_t batch : {1}) {
- for (size_t ic : {128, 32}) {
- for (size_t oc : {32}) {
- for (int ph : {static_cast<int>(fh / 2), 0}) {
- for (size_t ih : {8, 9, 13, 15, 16}) {
- for (size_t iw : {8, 16, 24, 32, 40}) {
- param.nonlineMode = mode;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = ph;
- checker.set_dtype(
- 0, dtype::Quantized4Asymm(
- 1.3f, (uint8_t)(1)))
- .set_dtype(
- 1, dtype::Quantized4Asymm(
- 1.3f, (uint8_t)(2)))
- .set_dtype(2, dtype::QuantizedS32(1.3f * 1.3f))
- .set_dtype(4, dtype::QuantizedS32(1.3f * 1.3f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_param(param);
- if (!ph)
- iw += 2 * (fh / 2);
- size_t oh = infer_conv_shape(ih, fh, 1, ph);
- size_t ow = infer_conv_shape(iw, fh, 1, ph);
- if (ow % 8 != 0)
- continue;
- checker.execs(
- {{batch, ic / 8, ih, iw, 8},
- {oc, ic / 8, fh, fh, 8},
- {1, oc / 8, 1, 1, 8},
- {},
- {}});
- checker.execs(
- {{batch, ic / 8, ih, iw, 8},
- {oc, ic / 8, fh, fh, 8},
- {batch, oc / 8, oh, ow, 8},
- {},
- {}});
- }
- }
- }
- }
- }
- }
- }
- }
- #endif
- } // namespace
-
- #if CUDNN_VERSION >= 7400
- TEST_F(CUDA, CONV_BIAS_FORWARD_F32) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_args();
- Checker<ConvBiasForward> checker(handle_cuda());
-
- NormalRNG default_rng;
- for (auto&& arg : args) {
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &default_rng)
- .set_rng(1, &default_rng)
- .set_rng(2, &default_rng)
- .set_epsilon(1e-3)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_BF16) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_args();
- Checker<ConvBiasForward> checker(handle_cuda());
-
- checker.set_before_exec_callback(AlgoChecker<ConvBiasForward>(
- ExecutionPolicyAlgoName{"CONVBIAS_BFLOAT16", {{"MATMUL", {}}}}));
- NormalRNG default_rng;
- for (auto&& arg : args) {
- arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
- checker.set_dtype(0, dtype::BFloat16())
- .set_dtype(1, dtype::BFloat16())
- .set_dtype(2, dtype::BFloat16())
- .set_dtype(3, dtype::BFloat16())
- .set_dtype(4, dtype::BFloat16())
- .set_rng(0, &default_rng)
- .set_rng(1, &default_rng)
- .set_rng(2, &default_rng)
- .set_epsilon(2e-2)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_QS8) {
- require_compute_capability(6, 1);
-
- UniformIntRNG int_rng{-50, 50};
- Checker<ConvBiasForward> checker(handle_cuda());
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NHWC;
- param.nonlineMode = ConvBias::Param::NonlineMode::IDENTITY;
- {
- auto src_shape = TensorShape{20, 224, 224, 4};
- auto filter_shape = TensorShape{24, 1, 1, 4};
- auto bias_shape = TensorShape{1, 1, 1, 24};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_param(param)
- .execs({src_shape, filter_shape, bias_shape, {}, {}});
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(40.25f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_param(param)
- .execs({src_shape, filter_shape, bias_shape, {}, {}});
- }
- {
- auto src_shape = TensorShape{20, 224, 224, 4};
- auto filter_shape = TensorShape{24, 1, 1, 4};
- auto bias_shape = TensorShape{1, 1, 1, 24};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_param(param)
- .execs({src_shape, filter_shape, bias_shape, {}, {}});
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(40.25f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_param(param)
- .execs({src_shape, filter_shape, bias_shape, {}, {}});
- }
-
- {
- param.sparse = ConvBias::Param::Sparse::GROUP;
- auto src_shape = TensorShape{20, 224, 224, 16};
- auto filter_shape = TensorShape{4, 4, 1, 1, 4};
- auto bias_shape = TensorShape{1, 1, 1, 16};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_param(param)
- .execs({src_shape, filter_shape, bias_shape, {}, {}});
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(40.25f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_param(param)
- .execs({src_shape, filter_shape, bias_shape, {}, {}});
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_FLOAT16) {
- require_compute_capability(6, 1);
-
- Checker<ConvBiasForward> checker(handle_cuda());
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NHWC;
- param.nonlineMode = ConvBias::Param::NonlineMode::IDENTITY;
-
- checker.set_epsilon(2e-2)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_dtype(3, dtype::Float16())
- .set_dtype(4, dtype::Float16());
- {
- auto src_shape = TensorShape{20, 224, 224, 4};
- auto filter_shape = TensorShape{24, 1, 1, 4};
- auto bias_shape = TensorShape{1, 1, 1, 24};
- checker.set_param(param).execs({src_shape, filter_shape, bias_shape, {}, {}});
- param.compute_mode = ConvBias::Param::ComputeMode::FLOAT32;
- checker.set_param(param).execs({src_shape, filter_shape, bias_shape, {}, {}});
- }
-
- {
- param.sparse = ConvBias::Param::Sparse::GROUP;
- auto src_shape = TensorShape{20, 224, 224, 16};
- auto filter_shape = TensorShape{4, 4, 1, 1, 4};
- auto bias_shape = TensorShape{1, 1, 1, 16};
- checker.set_param(param).execs({src_shape, filter_shape, bias_shape, {}, {}});
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_NCHW_QS8) {
- //! not support NonlineMode::SIGMOID and NonlineMode::H_SWISH
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- UniformIntRNG int_rng{-128, 127};
- using NonlineMode = ConvBias::Param::NonlineMode;
-
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW;
-
- checker.set_dtype(0, dtype::QuantizedS8(1.f))
- .set_dtype(1, dtype::QuantizedS8(1.f))
- .set_dtype(2, dtype::QuantizedS32(1.f))
- .set_dtype(3, dtype::QuantizedS8(1.f))
- .set_dtype(4, dtype::QuantizedS8(1.f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_rng(3, &int_rng);
-
- for (NonlineMode mode :
- {NonlineMode::RELU, NonlineMode::IDENTITY, NonlineMode::H_SWISH}) {
- for (size_t g : {1, 2}) {
- for (size_t b : {2}) {
- for (size_t ic : {6, 16}) {
- for (size_t oc : {4}) {
- for (size_t fh : {1, 3}) {
- for (int ph : {static_cast<int>(fh / 2)}) {
- for (int sh : {1, 2}) {
- size_t ih = 16, iw = 16;
- param.nonlineMode = mode;
- param.stride_h = param.stride_w = sh;
- param.pad_h = param.pad_w = ph;
- param.sparse = ConvBias::Param::Sparse::DENSE;
- checker.set_param(param).execs(
- {{b, ic / 2, ih, iw},
- {oc, ic / 2, fh, fh},
- {1, oc, 1, 1},
- {},
- {}});
- param.sparse = ConvBias::Param::Sparse::GROUP;
- checker.set_param(param).execs(
- {{b, ic, ih, iw},
- {g, oc / g, ic / g, fh, fh},
- {1, oc, 1, 1},
- {},
- {}});
- }
- }
- }
- }
- }
- }
- }
- }
-
- for (NonlineMode mode :
- {NonlineMode::RELU, NonlineMode::IDENTITY, NonlineMode::H_SWISH}) {
- for (size_t g : {13}) {
- for (size_t b : {1, 2}) {
- for (size_t ic : {13}) {
- for (size_t oc : {13}) {
- for (size_t fh : {1, 3}) {
- for (int ph : {static_cast<int>(fh / 2)}) {
- for (int sh : {1, 2}) {
- size_t ih = 16, iw = 16;
- param.nonlineMode = mode;
- param.stride_h = param.stride_w = sh;
- param.pad_h = param.pad_w = ph;
- param.sparse = ConvBias::Param::Sparse::GROUP;
- checker.set_param(param).execs(
- {{b, ic, ih, iw},
- {g, oc / g, ic / g, fh, fh},
- {1, oc, 1, 1},
- {},
- {}});
- }
- }
- }
- }
- }
- }
- }
- }
- {
- size_t ih = 16, iw = 16, b = 1, oc = 14, ic = 14;
- size_t fh = 3, sh = 1, ph = 1;
- param.nonlineMode = NonlineMode::IDENTITY;
- param.stride_h = param.stride_w = sh;
- param.pad_h = param.pad_w = ph;
- param.sparse = ConvBias::Param::Sparse::DENSE;
- checker.set_param(param).execs({{b, ic, ih, iw}, {oc, ic, fh, fh}, {}, {}, {}});
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_NCHW_QS8_FUSE_Z) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- UniformIntRNG int_rng{-128, 127};
- using NonlineMode = ConvBias::Param::NonlineMode;
-
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW;
-
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(3, dtype::QuantizedS8(0.25f))
- .set_dtype(4, dtype::QuantizedS8(0.25f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_rng(3, &int_rng);
-
- for (NonlineMode mode :
- {NonlineMode::RELU, NonlineMode::IDENTITY, NonlineMode::H_SWISH}) {
- for (size_t b : {2}) {
- for (size_t ic : {6, 16}) {
- for (size_t oc : {4}) {
- for (size_t fh : {1, 3}) {
- for (int ph : {static_cast<int>(fh / 2)}) {
- for (int sh : {1, 2}) {
- size_t ih = 16, iw = 16;
- param.nonlineMode = mode;
- param.stride_h = param.stride_w = sh;
- param.pad_h = param.pad_w = ph;
- param.sparse = ConvBias::Param::Sparse::DENSE;
- const size_t oh = (ih - fh + 2 * ph) / sh + 1;
- const size_t ow = (iw - fh + 2 * ph) / sh + 1;
- checker.set_param(param).execs(
- {{b, ic, ih, iw},
- {oc, ic, fh, fh},
- {1, oc, 1, 1},
- {b, oc, oh, ow},
- {}});
- }
- }
- }
- }
- }
- }
- }
- }
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_NCHW4_INT8) {
- require_compute_capability(6, 1);
- Benchmarker<ConvBiasForward> bencher(handle_cuda());
- bencher.set_display(false);
- ConvBias::Param param_nchw;
- param_nchw.format = ConvBias::Param::Format::NCHW;
- ConvBias::Param param_nchw4;
- param_nchw4.format = ConvBias::Param::Format::NCHW4;
-
- auto i8_min = std::numeric_limits<int8_t>().min();
- auto i8_max = std::numeric_limits<int8_t>().max();
- UniformIntRNG int_rng{i8_min, i8_max};
-
- param_nchw.nonlineMode = ConvBias::Param::NonlineMode::IDENTITY;
- auto run_bench = [&](size_t b, size_t ci, size_t hi, size_t wi, size_t co,
- size_t fh, size_t fw, size_t sh, size_t sw, size_t nr_times) {
- param_nchw.pad_h = fh / 2;
- param_nchw.pad_w = fw / 2;
- param_nchw.stride_h = sh;
- param_nchw.stride_w = sw;
- param_nchw4.pad_h = fh / 2;
- param_nchw4.pad_w = fh / 2;
- param_nchw4.stride_h = sh;
- param_nchw4.stride_w = sw;
- bencher.set_times(nr_times)
- .set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(0.35f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng);
- bencher.set_param(param_nchw);
- size_t ho = infer_conv_shape(hi, fh, sh, param_nchw.pad_h);
- size_t wo = infer_conv_shape(wi, fw, sw, param_nchw.pad_w);
- TensorShape inp{b, ci, hi, wi}, kern{co, ci, fh, fw}, out{b, co, ho, wo};
- auto time_in_ms = bencher.execs({inp, kern, {1, co, 1, 1}, {}, out}) / nr_times;
- auto ops_nchw =
- 2.0 * b * co * ho * wo * ci * fh * fw / (time_in_ms * 1e-3) * 1e-12;
- printf("inp=%s, kern=%s, out=%s, time: %.2fms, perf: %.2f Tops "
- "(NCHW)\n",
- inp.to_string().c_str(), kern.to_string().c_str(),
- out.to_string().c_str(), time_in_ms, ops_nchw);
- bencher.set_param(param_nchw4);
- decltype(ops_nchw) ops_nchw4;
- {
- TensorShape inp{b, ci / 4, hi, wi, 4}, kern{co, ci / 4, fh, fw, 4},
- out{b, co / 4, ho, wo, 4};
- auto time_in_ms =
- bencher.execs({inp, kern, {1, co / 4, 1, 1, 4}, {}, out}) /
- nr_times;
- ops_nchw4 =
- 2.0 * b * co * ho * wo * ci * fh * fw / (time_in_ms * 1e-3) * 1e-12;
- printf("inp=%s, kern=%s, out=%s, time: %.2fms, perf: %.2f Tops "
- "(NCHW4)\n",
- inp.to_string().c_str(), kern.to_string().c_str(),
- out.to_string().c_str(), time_in_ms, ops_nchw4);
- }
- printf("speedup: %.2fx\n", ops_nchw4 / ops_nchw);
- };
- // resnet-50
- // bottleneck-1
- // proj
- run_bench(1, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
- run_bench(1, 64, 56, 56, 64, 1, 1, 1, 1, 1000);
- run_bench(1, 64, 56, 56, 64, 3, 3, 1, 1, 1000);
- run_bench(1, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
-
- // bottleneck-2
- // proj
- run_bench(1, 256, 56, 56, 512, 1, 1, 2, 2, 1000);
- run_bench(1, 256, 56, 56, 128, 1, 1, 2, 2, 1000);
- run_bench(1, 128, 28, 28, 128, 3, 3, 1, 1, 1000);
- run_bench(1, 128, 28, 28, 512, 1, 1, 1, 1, 1000);
-
- // bottleneck-3
- // proj
- run_bench(1, 512, 28, 28, 1024, 1, 1, 2, 2, 1000);
- run_bench(1, 512, 28, 28, 256, 1, 1, 2, 2, 1000);
- run_bench(1, 256, 14, 14, 256, 3, 3, 1, 1, 1000);
- run_bench(1, 256, 14, 14, 1024, 1, 1, 1, 1, 1000);
-
- // bottleneck-4
- // proj
- run_bench(1, 1024, 14, 14, 2048, 1, 1, 2, 2, 1000);
- run_bench(1, 1024, 14, 14, 512, 1, 1, 2, 2, 1000);
- run_bench(1, 512, 7, 7, 512, 3, 3, 1, 1, 1000);
- run_bench(1, 512, 7, 7, 2048, 1, 1, 1, 1, 1000);
-
- run_bench(32, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
- run_bench(32, 64, 56, 56, 64, 1, 1, 1, 1, 1000);
- run_bench(32, 64, 56, 56, 64, 3, 3, 1, 1, 1000);
- run_bench(32, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
- run_bench(32, 256, 56, 56, 512, 1, 1, 2, 2, 1000);
- run_bench(32, 256, 56, 56, 128, 1, 1, 2, 2, 1000);
- run_bench(32, 128, 28, 28, 128, 3, 3, 1, 1, 1000);
- run_bench(32, 128, 28, 28, 512, 1, 1, 1, 1, 1000);
- run_bench(32, 512, 28, 28, 1024, 1, 1, 2, 2, 1000);
- run_bench(32, 512, 28, 28, 256, 1, 1, 2, 2, 1000);
- run_bench(32, 256, 14, 14, 256, 3, 3, 1, 1, 1000);
- run_bench(32, 256, 14, 14, 1024, 1, 1, 1, 1, 1000);
- run_bench(32, 1024, 14, 14, 2048, 1, 1, 2, 2, 1000);
- run_bench(32, 1024, 14, 14, 512, 1, 1, 2, 2, 1000);
- run_bench(32, 512, 7, 7, 512, 3, 3, 1, 1, 1000);
- run_bench(32, 512, 7, 7, 2048, 1, 1, 1, 1, 1000);
-
- run_bench(256, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
- run_bench(256, 64, 56, 56, 64, 1, 1, 1, 1, 1000);
- run_bench(256, 64, 56, 56, 64, 3, 3, 1, 1, 1000);
- run_bench(256, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
- run_bench(256, 256, 56, 56, 512, 1, 1, 2, 2, 1000);
- run_bench(256, 256, 56, 56, 128, 1, 1, 2, 2, 1000);
- run_bench(256, 128, 28, 28, 128, 3, 3, 1, 1, 1000);
- run_bench(256, 128, 28, 28, 512, 1, 1, 1, 1, 1000);
- run_bench(256, 512, 28, 28, 1024, 1, 1, 2, 2, 1000);
- run_bench(256, 512, 28, 28, 256, 1, 1, 2, 2, 1000);
- run_bench(256, 256, 14, 14, 256, 3, 3, 1, 1, 1000);
- run_bench(256, 256, 14, 14, 1024, 1, 1, 1, 1, 1000);
- run_bench(256, 1024, 14, 14, 2048, 1, 1, 2, 2, 1000);
- run_bench(256, 1024, 14, 14, 512, 1, 1, 2, 2, 1000);
- run_bench(256, 512, 7, 7, 512, 3, 3, 1, 1, 1000);
- run_bench(256, 512, 7, 7, 2048, 1, 1, 1, 1, 1000);
- }
- #endif
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_NCHW4) {
- require_compute_capability(6, 1);
- using namespace conv_bias;
- Checker<ConvBiasForward> checker(handle_cuda());
- UniformIntRNG int_rng{-5, 5};
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW4;
- param.nonlineMode = ConvBias::Param::NonlineMode::IDENTITY;
-
- checker.set_dtype(0, dtype::QuantizedS8(0.5f))
- .set_dtype(1, dtype::QuantizedS8(0.5f))
- .set_dtype(2, dtype::QuantizedS32(0.25f))
- .set_dtype(3, dtype::QuantizedS8(0.13f))
- .set_dtype(4, dtype::QuantizedS8(0.35f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_rng(3, &int_rng)
- .set_param(param);
-
- auto opr = handle_cuda()->create_operator<ConvBias>();
-
- auto run = [&](const TensorShapeArray& shapes) {
- opr->param() = param;
- TensorLayout dst_layout;
- opr->deduce_layout(
- {shapes[0], dtype::Float32()}, {shapes[1], dtype::Float32()}, {}, {},
- dst_layout);
- checker.execs({shapes[0], shapes[1], shapes[2], dst_layout, {}});
- };
-
- run({{1, 4, 4, 4, 4}, {4, 4, 3, 3, 4}, {1, 1, 1, 1, 4}});
- run({{1, 4, 4, 4, 4}, {260, 4, 3, 3, 4}, {1, 65, 1, 1, 4}});
- run({{20, 1, 24, 24, 4}, {24, 1, 2, 2, 4}, {1, 6, 1, 1, 4}});
- run({{20, 2, 24, 24, 4}, {24, 2, 3, 3, 4}, {1, 6, 1, 1, 4}});
-
- param.sparse = ConvBias::Param::Sparse::GROUP;
- checker.set_param(param);
- run({{1, 4, 24, 24, 4}, {4, 4, 1, 1, 1, 4}, {1, 4, 1, 1, 4}});
- run({{20, 8, 24, 24, 4}, {4, 24, 2, 2, 2, 4}, {1, 24, 1, 1, 4}});
- run({{1, 3, 24, 24, 4}, {3, 8, 1, 3, 3, 4}, {1, 6, 1, 1, 4}});
-
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 2;
- checker.set_param(param);
- run({{10, 16, 28, 28, 4}, {8, 8, 2, 3, 3, 4}, {1, 16, 1, 1, 4}});
-
- // case which cudnn not supported
- param.sparse = ConvBias::Param::Sparse::DENSE;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- checker.set_param(param);
- checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {1, 4, 1, 1, 4}, {}, {}});
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_NCHW4_NCHW) {
- require_compute_capability(6, 1);
- using namespace conv_bias;
- Checker<ConvBiasForward> checker(handle_cuda());
- UniformIntRNG int_rng{-3, 3};
- UniformFloatRNG float_rng{-50, 50};
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW4_NCHW;
- param.nonlineMode = ConvBias::Param::NonlineMode::IDENTITY;
-
- checker.set_dtype(0, dtype::QuantizedS8(1.9980618f))
- .set_dtype(1, dtype::QuantizedS8(1.9980927f))
- .set_dtype(2, dtype::Float32())
- .set_dtype(3, dtype::Float32())
- .set_dtype(4, dtype::Float32())
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &float_rng)
- .set_rng(3, &float_rng)
- .set_param(param);
-
- auto opr = handle_cuda()->create_operator<ConvBias>();
-
- auto run = [&](const TensorShapeArray& shapes) {
- opr->param() = param;
- TensorLayout dst_layout;
- opr->deduce_layout(
- {shapes[0], dtype::Float32()}, {shapes[1], dtype::Float32()}, {}, {},
- dst_layout);
- checker.execs({shapes[0], shapes[1], shapes[2], dst_layout, {}});
- };
-
- run({{1, 4, 4, 4, 4}, {4, 4, 3, 3, 4}, {1, 4, 1, 1}});
- run({{20, 1, 24, 24, 4}, {24, 1, 2, 2, 4}, {1, 24, 1, 1}});
- run({{20, 2, 24, 24, 4}, {24, 2, 3, 3, 4}, {1, 24, 1, 1}});
-
- param.sparse = ConvBias::Param::Sparse::GROUP;
- param.nonlineMode = ConvBias::Param::NonlineMode::RELU;
- checker.set_param(param);
- run({{1, 4, 24, 24, 4}, {4, 4, 1, 1, 1, 4}, {1, 16, 1, 1}});
- run({{20, 8, 24, 24, 4}, {4, 24, 2, 2, 2, 4}, {1, 96, 1, 1}});
- run({{1, 3, 24, 24, 4}, {3, 8, 1, 3, 3, 4}, {1, 24, 1, 1}});
-
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 2;
- checker.set_param(param);
- run({{10, 16, 28, 28, 4}, {8, 8, 2, 3, 3, 4}, {1, 64, 1, 1}});
-
- // case which cudnn not supported
- param.sparse = ConvBias::Param::Sparse::DENSE;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.nonlineMode = ConvBias::Param::NonlineMode::H_SWISH;
- checker.set_param(param);
- checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {1, 16, 1, 1}, {}, {}});
- }
- #endif
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_CHANWISE) {
- Checker<ConvBiasForward> checker(handle_cuda());
- std::vector<TestArg> args = get_chanwise_args();
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ConvBiasForward::algo_name<ConvBias::DirectParam>("CHANNEL_WISE", {})
- .c_str()));
-
- for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()}) {
- checker.set_dtype(0, dtype)
- .set_dtype(1, dtype)
- .set_dtype(2, dtype)
- .set_dtype(3, dtype)
- .set_dtype(4, dtype);
- if (dtype.enumv() == DTypeEnum::Float16)
- checker.set_epsilon(2e-2);
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_CHANWISE_SMALL) {
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ConvBiasForward::algo_name<ConvBias::DirectParam>("CHANNEL_WISE_SMALL", {})
- .c_str()));
- param::ConvBias cur_param;
- using NLMode = param::ConvBias::NonlineMode;
- cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
- cur_param.sparse = ConvBias::Param::Sparse::GROUP;
-
- for (auto nlmode :
- {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
- cur_param.nonlineMode = nlmode;
- for (auto dtype : std::vector<DType> {
- dtype::Float32(),
- #if CUDA_VERSION >= 9000
- dtype::Float16()
- #endif
- }) {
- checker.set_dtype(0, dtype)
- .set_dtype(1, dtype)
- .set_dtype(2, dtype)
- .set_dtype(3, dtype)
- .set_dtype(4, dtype);
- if (dtype.enumv() == DTypeEnum::Float16)
- checker.set_epsilon(2e-2);
-
- for (uint32_t s : {1}) {
- for (uint32_t f : {1, 3, 5, 7}) {
- cur_param.pad_h = cur_param.pad_w = f / 2;
- cur_param.stride_h = cur_param.stride_w = s;
- checker.set_param(cur_param).execs(
- {{2, 3, 16, 16}, {3, 1, 1, f, f}, {1, 3, 1, 1}, {}, {}});
- }
- }
-
- cur_param.pad_h = cur_param.pad_w = 1;
- cur_param.stride_h = cur_param.stride_w = 1;
- checker.set_param(cur_param)
- .execs({{2, 3, 3, 16}, {3, 1, 1, 3, 3}, {1, 3, 1, 1}, {}, {}})
- .execs({{2, 3, 8, 3}, {3, 1, 1, 3, 3}, {1, 3, 1, 1}, {}, {}});
- }
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) {
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ConvBiasForward::algo_name<ConvBias::DirectParam>(
- "DEPTHWISE_LARGE_FILTER", {})
- .c_str()));
- for (auto dtype : std::vector<DType> {
- dtype::Float32(),
- #if CUDA_VERSION >= 9000
- dtype::Float16()
- #endif
- }) {
- auto run = [&checker, &dtype](
- size_t n, size_t g, size_t h, size_t fh, size_t padding,
- size_t stride) {
- param::ConvBias cur_param;
- cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
- cur_param.sparse = ConvBias::Param::Sparse::GROUP;
- checker.set_dtype(0, dtype)
- .set_dtype(1, dtype)
- .set_dtype(2, dtype)
- .set_dtype(3, dtype)
- .set_dtype(4, dtype);
- float scale = 64.f / sqrt(fh * fh);
- UniformFloatRNG rng(scale, 2 * scale);
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_rng(3, &rng)
- .set_rng(4, &rng);
- if (dtype.enumv() == DTypeEnum::Float16) {
- checker.set_epsilon(1e-1);
- }
-
- cur_param.pad_h = cur_param.pad_w = padding;
- cur_param.stride_h = cur_param.stride_w = stride;
- checker.set_param(cur_param).execs(
- {{n, g, h, h}, {g, 1, 1, fh, fh}, {}, {}, {}});
- };
- run(4, 8, 32, 5, 5 / 2, 1);
- run(4, 8, 32, 7, 7 / 2, 1);
- run(4, 8, 32, 9, 9 / 2, 1);
- run(4, 8, 32, 11, 11 / 2, 1);
- run(4, 8, 32, 13, 13 / 2, 1);
- run(4, 8, 32, 15, 15 / 2, 1);
- run(4, 8, 32, 17, 17 / 2, 1);
- run(4, 8, 32, 19, 19 / 2, 1);
- run(4, 8, 32, 21, 21 / 2, 1);
- run(4, 8, 32, 23, 23 / 2, 1);
- run(4, 8, 32, 25, 25 / 2, 1);
- run(4, 8, 32, 27, 27 / 2, 1);
- run(4, 8, 32, 29, 29 / 2, 1);
- run(4, 8, 32, 31, 31 / 2, 1);
- run(4, 8, 64, 5, 5 / 3, 2);
- run(4, 8, 64, 7, 7 / 3, 2);
- run(4, 8, 64, 9, 9 / 3, 2);
- run(4, 8, 64, 11, 11 / 3, 2);
- run(4, 8, 64, 13, 13 / 3, 2);
- run(4, 8, 64, 15, 15 / 3, 2);
- run(4, 8, 64, 17, 17 / 3, 2);
- run(4, 8, 64, 19, 19 / 3, 2);
- run(4, 8, 64, 21, 21 / 3, 2);
- run(4, 8, 64, 23, 23 / 3, 2);
- run(4, 8, 64, 25, 25 / 3, 2);
- run(4, 8, 64, 27, 27 / 3, 2);
- run(4, 8, 64, 29, 29 / 3, 2);
- run(4, 8, 64, 31, 31 / 3, 2);
- run(1, 2, 128, 31, 10, 2);
- run(1, 2, 256, 31, 10, 2);
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_CHANWISE_8x8x32) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ConvBiasForward::algo_name<ConvBias::DirectParam>("CHANNEL_WISE_8X8X32", {})
- .c_str()));
- param::ConvBias cur_param;
- using NLMode = param::ConvBias::NonlineMode;
- cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
- cur_param.sparse = ConvBias::Param::Sparse::GROUP;
- cur_param.format = ConvBias::Param::Format::NHWC;
-
- UniformIntRNG rng(-4, 4);
- checker.set_dtype(0, dtype::Int8{})
- .set_dtype(1, dtype::Int8{})
- .set_dtype(2, dtype::Int32{})
- .set_dtype(4, dtype::Int32{})
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
- for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU}) {
- cur_param.nonlineMode = nlmode;
- for (uint32_t s : {1, 2}) {
- for (uint32_t f : {1, 3, 5, 7}) {
- for (uint32_t g : {4, 8}) {
- cur_param.pad_h = cur_param.pad_w = f / 2;
- cur_param.stride_h = cur_param.stride_w = s;
- checker.set_param(cur_param).execs(
- {{2, 9, 16, g}, {g, 1, f, f, 1}, {1, 1, 1, g}, {}, {}});
- }
- }
- }
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_CUDNN_CONVOLUTION) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_args();
- Checker<ConvBiasForward> checker(handle_cuda());
-
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ConvBiasForward::algo_name<ConvBias::DefaultParam>("CUDNN:Convolution", {})
- .c_str()));
-
- NormalRNG default_rng;
- for (auto&& arg : args) {
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &default_rng)
- .set_rng(1, &default_rng)
- .set_rng(2, &default_rng)
- .set_epsilon(1e-3)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- //! noncontiguous case
- {
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- checker.set_param(param).execl(TensorLayoutArray{
- {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
- {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
- {{}, {}, dtype::Float32()},
- {{}, {}, dtype::Float32()},
- {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
- });
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_INPLACE_MATMUL) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_args();
- Checker<ConvBiasForward> checker(handle_cuda());
-
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ConvBiasForward::algo_name<ConvBias::MatmulParam>("INPLACE_MATMUL", {})
- .c_str()));
- param::ConvBias cur_param;
- using NLMode = param::ConvBias::NonlineMode;
- cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
- cur_param.sparse = ConvBias::Param::Sparse::DENSE;
- NormalRNG default_rng;
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &default_rng)
- .set_rng(1, &default_rng)
- .set_rng(2, &default_rng)
- .set_epsilon(1e-3);
-
- for (auto nlmode :
- {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
- cur_param.nonlineMode = nlmode;
- for (uint32_t s : {1}) {
- for (uint32_t f : {1, 3, 5, 7}) {
- cur_param.pad_h = cur_param.pad_w = f / 2;
- cur_param.stride_h = cur_param.stride_w = s;
- checker.set_param(cur_param).execs(
- {{2, 4, 16, 16}, {4, 4, f, f}, {1, 4, 1, 1}, {}, {}});
- }
- }
-
- cur_param.pad_h = cur_param.pad_w = 1;
- cur_param.stride_h = cur_param.stride_w = 1;
- checker.set_param(cur_param)
- .execs({{2, 3, 3, 16}, {5, 3, 3, 3}, {1, 5, 1, 1}, {}, {}})
- .execs({{2, 2, 8, 3}, {3, 2, 3, 3}, {1, 3, 1, 1}, {}, {}});
- }
- //! noncontiguous case
- {
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- checker.set_param(param).execl(TensorLayoutArray{
- {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
- {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
- {{}, {}, dtype::Float32()},
- {{}, {}, dtype::Float32()},
- {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
- });
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_MATMUL) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_args();
- Checker<ConvBiasForward> checker(handle_cuda());
-
- checker.set_before_exec_callback(
- AlgoChecker<ConvBiasForward>(ExecutionPolicyAlgoName{
- ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>(
- "MATMUL", {})
- .c_str(),
- {{"CUBLAS", {}}}}));
- param::ConvBias cur_param;
- using NLMode = param::ConvBias::NonlineMode;
- cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
- cur_param.sparse = ConvBias::Param::Sparse::DENSE;
- NormalRNG default_rng;
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &default_rng)
- .set_rng(1, &default_rng)
- .set_rng(2, &default_rng)
- .set_epsilon(1e-3);
-
- for (auto nlmode :
- {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
- cur_param.nonlineMode = nlmode;
- for (uint32_t s : {1}) {
- for (uint32_t f : {1, 3, 5, 7}) {
- cur_param.pad_h = cur_param.pad_w = f / 2;
- cur_param.stride_h = cur_param.stride_w = s;
- checker.set_param(cur_param).execs(
- {{2, 4, 16, 16}, {4, 4, f, f}, {1, 4, 1, 1}, {}, {}});
- }
- }
-
- cur_param.pad_h = cur_param.pad_w = 0;
- cur_param.stride_h = cur_param.stride_w = 1;
- checker.set_param(cur_param)
- .execs({{2, 3, 3, 16}, {5, 3, 3, 3}, {1, 5, 1, 1}, {}, {}})
- .execs({{2, 2, 8, 3}, {3, 2, 3, 3}, {1, 3, 1, 1}, {}, {}});
- }
- //! noncontiguous case
- {
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- checker.set_param(param).execl(TensorLayoutArray{
- {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
- {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
- {{}, {}, dtype::Float32()},
- {{}, {}, dtype::Float32()},
- {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
- });
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_MATMUL_8x8x32) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>("MATMUL8X8X32", {})
- .c_str()));
- param::ConvBias cur_param;
- using NLMode = param::ConvBias::NonlineMode;
- cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
- cur_param.sparse = ConvBias::Param::Sparse::DENSE;
- cur_param.format = param::ConvBias::Format::NHWC;
-
- UniformIntRNG rng{-100, 100};
- UniformIntRNG bias_rng{-1000, 1000};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{1.0f})
- .set_epsilon(1);
-
- for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU}) {
- cur_param.nonlineMode = nlmode;
- for (uint32_t s : {1}) {
- for (uint32_t f : {1, 3, 5, 7}) {
- cur_param.pad_h = cur_param.pad_w = f / 2;
- cur_param.stride_h = cur_param.stride_w = s;
- checker.set_param(cur_param).execs(
- {{2, 16, 16, 4}, {4, f, f, 4}, {1, 1, 1, 4}, {}, {}});
- }
- }
-
- cur_param.pad_h = cur_param.pad_w = 0;
- cur_param.stride_h = cur_param.stride_w = 1;
- checker.set_param(cur_param)
- .execs({{2, 3, 16, 3}, {5, 3, 3, 3}, {1, 1, 1, 5}, {}, {}})
- .execs({{2, 8, 3, 2}, {3, 3, 3, 2}, {1, 1, 1, 3}, {}, {}});
- }
- //! noncontiguous case
- {
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.format = param::ConvBias::Format::NHWC;
- checker.set_param(param).execl(TensorLayoutArray{
- {{2, 7, 7, 16}, {1568, 224, 32, 1}, dtype::QuantizedS8{1.2f}},
- {{16, 3, 3, 16}, {144, 48, 16, 1}, dtype::QuantizedS8{1.3f}},
- {{}, {}, dtype::QuantizedS32{1.2f * 1.3f}},
- {{}, {}, dtype::QuantizedS8{1.1f}},
- {{2, 7, 7, 16}, {1568, 224, 32, 1}, dtype::QuantizedS32{1.2f * 1.3f}},
- });
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_MATMUL_NCHW4) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>("MATMUL8X8X32", {})
- .c_str()));
-
- UniformIntRNG int_rng{-127, 127};
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW4;
- using NLMode = ConvBias::Param::NonlineMode;
-
- checker.set_dtype(0, dtype::QuantizedS8(0.5f))
- .set_dtype(1, dtype::QuantizedS8(0.5f))
- .set_dtype(2, dtype::QuantizedS32(0.25f))
- .set_dtype(4, dtype::QuantizedS8(0.35f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng);
-
- param.sparse = Convolution::Param::Sparse::DENSE;
- param.nonlineMode = NLMode::IDENTITY;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- checker.set_param(param);
- checker.exec({{8, 4, 10, 10, 4}, {16, 4, 3, 3, 4}, {1, 4, 1, 1, 4}, {}, {}});
- checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {1, 4, 1, 1, 4}, {}, {}});
- checker.exec({{8, 64, 12, 12, 4}, {256, 64, 3, 3, 4}, {1, 64, 1, 1, 4}, {}, {}});
- //! noncontiguous case
- {
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.format = ConvBias::Param::Format::NCHW4;
- checker.set_param(param).execl(TensorLayoutArray{
- {{2, 4, 7, 7, 4}, {1568, 196, 28, 4, 1}, dtype::QuantizedS8{1.2f}},
- {{16, 4, 3, 3, 4}, {144, 36, 12, 4, 1}, dtype::QuantizedS8{1.3f}},
- {{}, {}, dtype::QuantizedS32{1.2f * 1.3f}},
- {{}, {}, dtype::QuantizedS8{1.1f}},
- {{2, 4, 7, 7, 4},
- {1568, 196, 28, 4, 1},
- dtype::QuantizedS32{1.2f * 1.3f}},
- });
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_BATCHED_MATMUL) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_args_1x1();
- Checker<ConvBiasForward> checker(handle_cuda());
-
- NormalRNG default_rng;
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &default_rng)
- .set_rng(1, &default_rng)
- .set_rng(2, &default_rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- AlgoChecker<ConvBiasForward>(ExecutionPolicyAlgoName{
- ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>(
- "BATCHED_MATMUL", {})
- .c_str(),
- {{"CUBLAS", {}}}}));
-
- for (auto&& arg : args) {
- checker.set_param(arg.param);
- checker.execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- //! noncontiguous case
- {
- param::ConvBias param;
- checker.set_param(param).execl(TensorLayoutArray{
- {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
- {{16, 16, 1, 1}, {16, 1, 1, 1}, dtype::Float32()},
- {{}, {}, dtype::Float32()},
- {{}, {}, dtype::Float32()},
- {{2, 16, 7, 7}, {784, 49, 7, 1}, dtype::Float32()},
- });
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_GROUP) {
- using NLMode = ConvBias::Param::NonlineMode;
- bool is_int_available = false;
- if (megdnn::test::check_compute_capability(6, 1)) {
- is_int_available = true;
- } else {
- is_int_available = false;
- }
-
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t FH, size_t FW,
- size_t OC, size_t PH, size_t PW, size_t SH, size_t SW, size_t DH,
- size_t DW, size_t group, NLMode mode) {
- {
- // float case
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(ExecutionPolicyAlgoName{
- ConvBiasForward::algo_name<ConvBiasForward::DirectParam>(
- "CUDA:GROUP_CONV", {})
- .c_str(),
- {{"DEFAULT:CUDNN", {}}}}));
- ConvBias::Param param;
- param.sparse = ConvBias::Param::Sparse::GROUP;
- param.nonlineMode = mode;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_h = SH;
- param.stride_w = SW;
- param.dilate_h = DH;
- param.dilate_w = DW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec(
- {{N, IC, IH, IW},
- {group, OCg, ICg, FH, FW},
- {1, OCg * group, 1, 1},
- {},
- {}});
- }
- if (is_int_available) {
- // int 8x8x32 case
- Checker<ConvBiasForward> checker(handle_cuda());
- ConvBias::Param param;
- param.sparse = Convolution::Param::Sparse::GROUP;
- param.format = Convolution::Param::Format::NHWC;
- param.nonlineMode = NLMode::IDENTITY;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_h = SH;
- param.stride_w = SW;
- param.dilate_h = DH;
- param.dilate_w = DW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- UniformIntRNG rng(-4, 4);
- checker.set_param(param)
- .set_dtype(0, dtype::QuantizedS8(0.5f))
- .set_dtype(1, dtype::QuantizedS8(0.5f))
- .set_dtype(2, dtype::QuantizedS32(0.25f))
- .set_dtype(3, dtype::QuantizedS8(0.13f))
- .set_dtype(4, dtype::QuantizedS8(0.35f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .exec({{N, IH, IW, IC},
- {group, OCg, FH, FW, ICg},
- {1, 1, 1, OCg * group},
- {},
- {}});
- }
- };
-
- for (NLMode nlmode :
- {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
- // normal case
- run(2, 64, 7, 7, 3, 3, 32, 0, 0, 1, 1, 1, 1, 2, nlmode);
- // padded case
- run(2, 32, 7, 7, 3, 3, 64, 1, 1, 1, 1, 1, 1, 4, nlmode);
- // strided case
- run(2, 32, 7, 7, 3, 3, 64, 0, 0, 2, 2, 1, 1, 8, nlmode);
- // dilate conv is supported in CUDNN since version 7.5.0
- #if CUDNN_VERSION >= 7500
- // dilated case
- run(2, 32, 7, 7, 3, 3, 64, 0, 0, 1, 1, 2, 2, 8, nlmode);
- #endif
- }
- }
-
- #if CUDA_VERSION >= 10000
- TEST_F(CUDA, CONV_BIAS_FORWARD_NCHW8_PART_1) {
- test_conv_bias_forward_wmma_int4_nchw8(handle_cuda(), 3);
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_NCHW8_PART_2) {
- test_conv_bias_forward_wmma_int4_nchw8(handle_cuda(), 5);
- }
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_NCHW8_PART_3) {
- test_conv_bias_forward_wmma_int4_nchw8(handle_cuda(), 7);
- }
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_QUANTIZED4x4x32) {
- require_compute_capability(7, 5);
- Benchmarker<ConvBiasForward> bencher(handle_cuda());
-
- UniformIntRNG int_rng{0, 8};
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW8;
- param.stride_h = param.stride_w = 1;
-
- using NonlineMode = ConvBias::Param::NonlineMode;
- param.nonlineMode = NonlineMode::RELU;
- auto run_bench = [&](size_t batch, size_t ci, size_t hi, size_t wi, size_t co,
- size_t fh, size_t fw, size_t nr_times) {
- param.pad_h = fh / 2;
- param.pad_w = fw / 2;
- bencher.set_param(param)
- .set_dtype(0, dtype::Quantized4Asymm(1.3f, (uint8_t)(1)))
- .set_dtype(1, dtype::Quantized4Asymm(1.3f, (uint8_t)(2)))
- .set_dtype(2, dtype::QuantizedS32(1.3f * 1.3f))
- .set_dtype(4, dtype::QuantizedS32(1.3f * 1.3f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng);
- bencher.set_times(nr_times);
- size_t ho = infer_conv_shape(hi, fh, 1, param.pad_h);
- size_t wo = infer_conv_shape(wi, fw, 1, param.pad_w);
- TensorShape inp{batch, ci / 8, hi, wi, 8}, kern{co, ci / 8, fh, fw, 8},
- out{batch, co / 8, ho, wo, 8};
- auto time_in_ms =
- bencher.execs({inp, kern, {1, co / 8, 1, 1, 8}, {}, out}) / nr_times;
- auto ops =
- 2.0 * batch * co * ho * wo * ci * fh * fw / (time_in_ms * 1e-3) * 1e-12;
- printf("inp=%s, kern=%s, out=%s, time: %.2fms, perf: %.2f Tops\n",
- inp.to_string().c_str(), kern.to_string().c_str(),
- out.to_string().c_str(), time_in_ms, ops);
- };
- run_bench(256, 256, 16, 16, 256, 3, 3, 1000);
-
- run_bench(1, 32, 224, 224, 64, 7, 7, 1000);
- run_bench(1, 8192, 64, 64, 4096, 3, 3, 1000);
- run_bench(1, 256, 64, 64, 256, 3, 3, 1000);
- run_bench(1, 64, 128, 128, 64, 3, 3, 1000);
- run_bench(1, 512, 32, 32, 512, 3, 3, 1000);
- run_bench(1, 1024, 16, 16, 1024, 3, 3, 1000);
-
- run_bench(1, 64, 56, 56, 64, 3, 3, 1000);
- run_bench(1, 128, 32, 32, 128, 3, 3, 1000);
- run_bench(1, 256, 16, 16, 256, 3, 3, 1000);
- run_bench(1, 512, 8, 8, 512, 3, 3, 1000);
-
- run_bench(32, 32, 224, 224, 64, 7, 7, 1000);
- run_bench(32, 64, 56, 56, 64, 3, 3, 1000);
- run_bench(32, 128, 32, 32, 128, 3, 3, 1000);
- run_bench(32, 256, 16, 16, 256, 3, 3, 1000);
- run_bench(32, 512, 8, 8, 512, 3, 3, 1000);
-
- run_bench(256, 32, 224, 224, 64, 7, 7, 1000);
- run_bench(256, 64, 56, 56, 64, 3, 3, 1000);
- run_bench(256, 128, 32, 32, 128, 3, 3, 1000);
- run_bench(256, 256, 16, 16, 256, 3, 3, 1000);
- run_bench(256, 512, 8, 8, 512, 3, 3, 1000);
- }
- #endif
- #endif
-
- TEST_F(CUDA, CONV_BIAS_FORWARD_DILATED) {
- require_compute_capability(6, 0);
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t FH, size_t FW,
- size_t OC, size_t PH, size_t PW, size_t SH, size_t SW, size_t DH,
- size_t DW) {
- {
- // float case
- Checker<ConvBiasForward> checker(handle_cuda());
- ConvBias::Param param;
- param.sparse = ConvBias::Param::Sparse::DENSE;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_h = SH;
- param.stride_w = SW;
- param.dilate_h = DH;
- param.dilate_w = DW;
- param.nonlineMode = ConvBias::Param::NonlineMode::IDENTITY;
- checker.set_param(param).exec(
- {{N, IC, IH, IW}, {OC, IC, FH, FW}, {1, OC, 1, 1}, {}, {}});
- }
- };
-
- // dilated case
- run(2, 8, 7, 7, 3, 3, 4, 0, 0, 1, 1, 2, 2);
- }
-
- #if CUDNN_VERSION >= 7500
- TEST_F(CUDA, CONV_BIAS_FORWARD_TENSORCORE_INT8) {
- require_compute_capability(7, 5);
- using namespace conv_bias;
- Checker<ConvBiasForward> checker(handle_cuda());
- auto opr = handle_cuda()->create_operator<ConvBias>();
- auto i8_min = std::numeric_limits<int8_t>().min();
- auto i8_max = std::numeric_limits<int8_t>().max();
- UniformIntRNG int_rng{i8_min, i8_max};
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW32;
-
- using NonlineMode = ConvBias::Param::NonlineMode;
- for (NonlineMode mode : {NonlineMode::IDENTITY, NonlineMode::RELU}) {
- for (size_t batch : {2}) {
- for (size_t ic : {64, 32}) {
- for (size_t oc : {32}) {
- for (size_t fh : {3, 5, 7}) {
- for (int ph : {static_cast<int>(fh / 2), 0}) {
- for (int sh : {1, 2}) {
- for (size_t ih : {9, 11, 12}) {
- for (size_t iw : {8, 27, 32}) {
- param.nonlineMode = mode;
- param.stride_h = param.stride_w = sh;
- param.pad_h = param.pad_w = ph;
-
- opr->param() = param;
- TensorLayout dst_layout;
- opr->deduce_layout(
- {{batch, ic / 32, ih, iw, 32},
- dtype::Float32()},
- {{oc, ic / 32, fh, fh, 32},
- dtype::Float32()},
- {}, {}, dst_layout);
-
- checker.set_dtype(0, dtype::QuantizedS8(1.3f))
- .set_dtype(1, dtype::QuantizedS8(1.3f))
- .set_dtype(
- 2, dtype::QuantizedS32(
- 1.3f * 1.3f))
- .set_dtype(3, dtype::QuantizedS8(1.7f))
-
- .set_dtype(
- 4,
- dtype::QuantizedS8(1.2f * 1.2f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_rng(3, &int_rng)
- .set_epsilon(1 + 1e-3)
- .set_param(param)
- .execs({{batch, ic / 32, ih, iw, 32},
- {oc, ic / 32, fh, fh, 32},
- {1, oc / 32, 1, 1, 32},
- dst_layout,
- {}});
- }
- }
- }
- }
- }
- }
- }
- }
- }
- { //! convbiasactivation algo crash when oc > 256 && cudnn v8.0.4
- param.nonlineMode = NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 0;
-
- checker.set_dtype(0, dtype::QuantizedS8(1.3f))
- .set_dtype(1, dtype::QuantizedS8(1.3f))
- .set_dtype(2, dtype::QuantizedS32(1.3f * 1.3f))
- .set_dtype(3, dtype::QuantizedS8(1.7f))
-
- .set_dtype(4, dtype::QuantizedS8(1.2f * 1.2f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng)
- .set_rng(3, &int_rng)
- .set_epsilon(1 + 1e-3)
- .set_param(param)
- .execs({{2, 8, 12, 12, 32},
- {512, 8, 1, 1, 32},
- {1, 16, 1, 1, 32},
- {},
- {}});
- }
- }
-
- TEST_F(CUDA, CONV_BIAS_ADD_Z_CUDNN_CONVOLUTION) {
- using namespace conv_bias;
- Checker<ConvBiasForward> checker(handle_cuda());
-
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ConvBiasForward::algo_name<ConvBias::DefaultParam>("CUDNN:Convolution", {})
- .c_str()));
-
- NormalRNG default_rng;
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- using Format = param::ConvBias::Format;
- using NLMode = param::ConvBias::NonlineMode;
- param.nonlineMode = NLMode::RELU;
- auto c = [&](DType dt) {
- param.format = Format::NCHW;
- /// set epsilon to be 2e-3 to bypass low accuracy of winograd algorithm
- float eps = 2e-3;
- if (dt == dtype::Float16()) {
- eps = 1e-2;
- param.compute_mode = param::ConvBias::ComputeMode::FLOAT32;
- }
- checker.set_dtype(0, dt)
- .set_dtype(1, dt)
- .set_dtype(2, dt)
- .set_dtype(3, dt)
- .set_dtype(4, dt)
- .set_rng(0, &default_rng)
- .set_rng(1, &default_rng)
- .set_rng(2, &default_rng)
- .set_rng(3, &default_rng)
- .set_epsilon(eps)
- .set_param(param)
- .execs({{16, 256, 7, 7},
- {256, 256, 3, 3},
- {1, 256, 1, 1},
- {16, 256, 7, 7},
- {}});
- param.format = Format::NHWC;
- checker.set_param(param).execs(
- {{16, 7, 7, 256},
- {256, 3, 3, 256},
- {1, 1, 1, 256},
- {16, 7, 7, 256},
- {}});
- };
- c(dtype::Float32());
- c(dtype::Float16());
- }
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_TENSORCORE_INT8) {
- require_compute_capability(7, 5);
- Benchmarker<ConvBiasForward> bencher(handle_cuda());
- bencher.set_display(false);
-
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW32;
- ConvBias::Param param_without_tensorcore;
- param_without_tensorcore.format = ConvBias::Param::Format::NCHW4;
-
- auto i8_min = std::numeric_limits<int8_t>().min();
- auto i8_max = std::numeric_limits<int8_t>().max();
- UniformIntRNG int_rng{i8_min, i8_max};
-
- using NonlineMode = ConvBias::Param::NonlineMode;
- param.nonlineMode = NonlineMode::IDENTITY;
- auto run_bench = [&](size_t batch, size_t ci, size_t hi, size_t wi, size_t co,
- size_t fh, size_t fw, size_t sh, size_t sw, size_t nr_times) {
- param.pad_h = fh / 2;
- param.pad_w = fw / 2;
- param.stride_h = sh;
- param.stride_w = sw;
-
- param_without_tensorcore.pad_h = fh / 2;
- param_without_tensorcore.pad_w = fw / 2;
- param_without_tensorcore.stride_h = sh;
- param_without_tensorcore.stride_w = sw;
- bencher.set_param(param)
- .set_dtype(0, dtype::QuantizedS8(1.3f))
- .set_dtype(1, dtype::QuantizedS8(1.3f))
- .set_dtype(2, dtype::QuantizedS32(1.3f * 1.3f))
- .set_dtype(4, dtype::QuantizedS8(1.2f))
- .set_rng(0, &int_rng)
- .set_rng(1, &int_rng)
- .set_rng(2, &int_rng);
- bencher.set_times(nr_times);
- size_t ho = infer_conv_shape(hi, fh, sh, param.pad_h);
- size_t wo = infer_conv_shape(wi, fw, sw, param.pad_w);
- TensorShape inp{batch, ci / 32, hi, wi, 32}, kern{co, ci / 32, fh, fw, 32},
- out{batch, co / 32, ho, wo, 32};
- auto time_in_ms =
- bencher.execs({inp, kern, {1, co / 32, 1, 1, 32}, {}, out}) / nr_times;
- auto ops =
- 2.0 * batch * co * ho * wo * ci * fh * fw / (time_in_ms * 1e-3) * 1e-12;
- printf("inp=%s, kern=%s, out=%s, time: %.2fms, perf: %.2f Tops "
- "(TensorCore)",
- inp.to_string().c_str(), kern.to_string().c_str(),
- out.to_string().c_str(), time_in_ms, ops);
- decltype(ops) ops_without_tensorcore;
- bencher.set_param(param_without_tensorcore);
- {
- TensorShape inp{batch, ci / 4, hi, wi, 4}, kern{co, ci / 4, fh, fw, 4},
- out{batch, co / 4, ho, wo, 4};
- auto time_in_ms =
- bencher.execs({inp, kern, {1, co / 4, 1, 1, 4}, {}, out}) /
- nr_times;
- ops_without_tensorcore = 2.0 * batch * co * ho * wo * ci * fh * fw /
- (time_in_ms * 1e-3) * 1e-12;
- printf(", time: %.2fms perf: %.2f Tops (without TensorCore) ", time_in_ms,
- ops_without_tensorcore);
- }
- printf("speedup: %.2fx\n", ops / ops_without_tensorcore);
- };
-
- // resnet-50
- // bottleneck-1
- // proj
- run_bench(1, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
- run_bench(1, 64, 56, 56, 64, 1, 1, 1, 1, 1000);
- run_bench(1, 64, 56, 56, 64, 3, 3, 1, 1, 1000);
- run_bench(1, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
-
- // bottleneck-2
- // proj
- run_bench(1, 256, 56, 56, 512, 1, 1, 2, 2, 1000);
- run_bench(1, 256, 56, 56, 128, 1, 1, 2, 2, 1000);
- run_bench(1, 128, 28, 28, 128, 3, 3, 1, 1, 1000);
- run_bench(1, 128, 28, 28, 512, 1, 1, 1, 1, 1000);
-
- // bottleneck-3
- // proj
- run_bench(1, 512, 28, 28, 1024, 1, 1, 2, 2, 1000);
- run_bench(1, 512, 28, 28, 256, 1, 1, 2, 2, 1000);
- run_bench(1, 256, 14, 14, 256, 3, 3, 1, 1, 1000);
- run_bench(1, 256, 14, 14, 1024, 1, 1, 1, 1, 1000);
-
- // bottleneck-4
- // proj
- run_bench(1, 1024, 14, 14, 2048, 1, 1, 2, 2, 1000);
- run_bench(1, 1024, 14, 14, 512, 1, 1, 2, 2, 1000);
- run_bench(1, 512, 7, 7, 512, 3, 3, 1, 1, 1000);
- run_bench(1, 512, 7, 7, 2048, 1, 1, 1, 1, 1000);
-
- run_bench(32, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
- run_bench(32, 64, 56, 56, 64, 1, 1, 1, 1, 1000);
- run_bench(32, 64, 56, 56, 64, 3, 3, 1, 1, 1000);
- run_bench(32, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
- run_bench(32, 256, 56, 56, 512, 1, 1, 2, 2, 1000);
- run_bench(32, 256, 56, 56, 128, 1, 1, 2, 2, 1000);
- run_bench(32, 128, 28, 28, 128, 3, 3, 1, 1, 1000);
- run_bench(32, 128, 28, 28, 512, 1, 1, 1, 1, 1000);
- run_bench(32, 512, 28, 28, 1024, 1, 1, 2, 2, 1000);
- run_bench(32, 512, 28, 28, 256, 1, 1, 2, 2, 1000);
- run_bench(32, 256, 14, 14, 256, 3, 3, 1, 1, 1000);
- run_bench(32, 256, 14, 14, 1024, 1, 1, 1, 1, 1000);
- run_bench(32, 1024, 14, 14, 2048, 1, 1, 2, 2, 1000);
- run_bench(32, 1024, 14, 14, 512, 1, 1, 2, 2, 1000);
- run_bench(32, 512, 7, 7, 512, 3, 3, 1, 1, 1000);
- run_bench(32, 512, 7, 7, 2048, 1, 1, 1, 1, 1000);
-
- run_bench(256, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
- run_bench(256, 64, 56, 56, 64, 1, 1, 1, 1, 1000);
- run_bench(256, 64, 56, 56, 64, 3, 3, 1, 1, 1000);
- run_bench(256, 64, 56, 56, 256, 1, 1, 1, 1, 1000);
- run_bench(256, 256, 56, 56, 512, 1, 1, 2, 2, 1000);
- run_bench(256, 256, 56, 56, 128, 1, 1, 2, 2, 1000);
- run_bench(256, 128, 28, 28, 128, 3, 3, 1, 1, 1000);
- run_bench(256, 128, 28, 28, 512, 1, 1, 1, 1, 1000);
- run_bench(256, 512, 28, 28, 1024, 1, 1, 2, 2, 1000);
- run_bench(256, 512, 28, 28, 256, 1, 1, 2, 2, 1000);
- run_bench(256, 256, 14, 14, 256, 3, 3, 1, 1, 1000);
- run_bench(256, 256, 14, 14, 1024, 1, 1, 1, 1, 1000);
- run_bench(256, 1024, 14, 14, 2048, 1, 1, 2, 2, 1000);
- run_bench(256, 1024, 14, 14, 512, 1, 1, 2, 2, 1000);
- run_bench(256, 512, 7, 7, 512, 3, 3, 1, 1, 1000);
- run_bench(256, 512, 7, 7, 2048, 1, 1, 1, 1, 1000);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER_FP16) {
- require_compute_capability(7, 5);
- Benchmarker<ConvBiasForward> bencher(handle_cuda());
- bencher.set_display(false);
- bencher.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- ConvBiasForward::algo_name<ConvBiasForward::DirectParam>(
- "DEPTHWISE_LARGE_FILTER", {})
- .c_str()));
-
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW;
-
- using NonlineMode = ConvBias::Param::NonlineMode;
- param.nonlineMode = NonlineMode::IDENTITY;
- param.sparse = ConvBias::Param::Sparse::GROUP;
- auto run_bench = [&](size_t batch, size_t g, size_t hi, size_t wi, size_t fh,
- size_t fw, size_t sh, size_t sw, size_t nr_times) {
- param.pad_h = fh / 2;
- param.pad_w = fw / 2;
- param.stride_h = sh;
- param.stride_w = sw;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_dtype(4, dtype::Float16());
- bencher.set_times(nr_times);
- size_t ho = infer_conv_shape(hi, fh, sh, param.pad_h);
- size_t wo = infer_conv_shape(wi, fw, sw, param.pad_w);
- TensorShape inp{batch, g, hi, wi}, kern{g, 1, 1, fh, fw}, out{batch, g, ho, wo};
-
- float bandwith = static_cast<float>(
- inp.total_nr_elems() + kern.total_nr_elems() +
- out.total_nr_elems()) /
- (1024 * 1024 * 1024) * 1e3;
-
- auto time_in_ms = bencher.execs({inp, kern, {}, {}, out}) / nr_times;
- auto ops = 2.0 * batch * g * ho * wo * fh * fw / (time_in_ms * 1e-3) * 1e-12;
- printf("chanwise_depthwise_large_filter: inp=%s, kern=%s, out=%s, time: "
- "%.2fms, "
- "perf: %.2f Tops bandwidth: %.2fGB/s.\n",
- inp.to_string().c_str(), kern.to_string().c_str(),
- out.to_string().c_str(), time_in_ms, ops, bandwith * 4 / time_in_ms);
- };
-
- run_bench(64, 384, 32, 32, 3, 3, 1, 1, 10);
- run_bench(64, 384, 32, 32, 5, 5, 1, 1, 10);
- run_bench(64, 384, 32, 32, 7, 7, 1, 1, 10);
- run_bench(64, 384, 32, 32, 9, 9, 1, 1, 10);
- run_bench(64, 384, 32, 32, 11, 11, 1, 1, 10);
- run_bench(64, 384, 32, 32, 13, 13, 1, 1, 10);
- run_bench(64, 384, 32, 32, 15, 15, 1, 1, 10);
- run_bench(64, 384, 32, 32, 17, 17, 1, 1, 10);
- run_bench(64, 384, 32, 32, 19, 19, 1, 1, 10);
- run_bench(64, 384, 32, 32, 21, 21, 1, 1, 10);
- run_bench(64, 384, 32, 32, 23, 23, 1, 1, 10);
- run_bench(64, 384, 32, 32, 25, 25, 1, 1, 10);
- run_bench(64, 384, 32, 32, 27, 27, 1, 1, 10);
- run_bench(64, 384, 32, 32, 29, 29, 1, 1, 10);
- run_bench(64, 384, 32, 32, 31, 31, 1, 1, 10);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER_FP32) {
- require_compute_capability(7, 5);
- Benchmarker<ConvBiasForward> bencher(handle_cuda());
- bencher.set_display(false);
- bencher.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- ConvBiasForward::algo_name<ConvBiasForward::DirectParam>(
- "DEPTHWISE_LARGE_FILTER", {})
- .c_str()));
-
- ConvBias::Param param;
- param.format = ConvBias::Param::Format::NCHW;
-
- using NonlineMode = ConvBias::Param::NonlineMode;
- param.nonlineMode = NonlineMode::IDENTITY;
- param.sparse = ConvBias::Param::Sparse::GROUP;
- auto run_bench = [&](size_t batch, size_t g, size_t hi, size_t wi, size_t fh,
- size_t fw, size_t sh, size_t sw, size_t nr_times) {
- param.pad_h = fh / 2;
- param.pad_w = fw / 2;
- param.stride_h = sh;
- param.stride_w = sw;
-
- bencher.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_dtype(4, dtype::Float32());
- bencher.set_times(nr_times);
- size_t ho = infer_conv_shape(hi, fh, sh, param.pad_h);
- size_t wo = infer_conv_shape(wi, fw, sw, param.pad_w);
- TensorShape inp{batch, g, hi, wi}, kern{g, 1, 1, fh, fw}, out{batch, g, ho, wo};
-
- float bandwith = static_cast<float>(
- inp.total_nr_elems() + kern.total_nr_elems() +
- out.total_nr_elems()) /
- (1024 * 1024 * 1024) * 1e3;
-
- auto time_in_ms = bencher.execs({inp, kern, {}, {}, out}) / nr_times;
- auto ops = 2.0 * batch * g * ho * wo * fh * fw / (time_in_ms * 1e-3) * 1e-12;
- printf("chanwise_depthwise_large_filter: inp=%s, kern=%s, out=%s, time: "
- "%.2fms, "
- "perf: %.2f Tops bandwidth: %.2fGB/s.\n",
- inp.to_string().c_str(), kern.to_string().c_str(),
- out.to_string().c_str(), time_in_ms, ops, bandwith * 4 / time_in_ms);
- };
-
- run_bench(64, 384, 32, 32, 3, 3, 1, 1, 10);
- run_bench(64, 384, 32, 32, 5, 5, 1, 1, 10);
- run_bench(64, 384, 32, 32, 7, 7, 1, 1, 10);
- run_bench(64, 384, 32, 32, 9, 9, 1, 1, 10);
- run_bench(64, 384, 32, 32, 11, 11, 1, 1, 10);
- run_bench(64, 384, 32, 32, 13, 13, 1, 1, 10);
- run_bench(64, 384, 32, 32, 15, 15, 1, 1, 10);
- run_bench(64, 384, 32, 32, 17, 17, 1, 1, 10);
- run_bench(64, 384, 32, 32, 19, 19, 1, 1, 10);
- run_bench(64, 384, 32, 32, 21, 21, 1, 1, 10);
- run_bench(64, 384, 32, 32, 23, 23, 1, 1, 10);
- run_bench(64, 384, 32, 32, 25, 25, 1, 1, 10);
- run_bench(64, 384, 32, 32, 27, 27, 1, 1, 10);
- run_bench(64, 384, 32, 32, 29, 29, 1, 1, 10);
- run_bench(64, 384, 32, 32, 31, 31, 1, 1, 10);
- }
- #endif
- #endif
-
- // vim: syntax=cpp.doxygen
|