|
- /**
- * \file dnn/test/cuda/conv_test_utils.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
-
- #include "megdnn/oprs/nn.h"
-
- #include "src/common/utils.h"
- #include "src/cuda/cudnn_with_check.h"
- #include "test/common/checker.h"
- #include "test/common/conv_bias.h"
- #include "test/common/tensor.h"
- #include "test/common/workspace_wrapper.h"
- #include "test/cuda/benchmark.h"
- #include "test/cuda/conv_test_utils.h"
- #include "test/cuda/fixture.h"
- #include "test/cuda/utils.h"
-
- #define V1(x) #x
- #define V(x) V1(x)
-
- namespace megdnn {
- namespace test {
- namespace conv {
-
- #if MEGDNN_WITH_BENCHMARK
-
- std::vector<BenchArgs> get_resnet50_bench_args(size_t batch) {
- std::vector<BenchArgs> args;
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 256, 1, 1});
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 4, 256, 256, 32, 7, 2});
-
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 64, 1, 1});
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 1, 1});
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 2});
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 64, 3, 2});
-
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 512, 1, 2});
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 128, 1, 2});
- args.emplace_back(BenchArgs{batch, 512, 28, 28, 128, 1, 1});
- args.emplace_back(BenchArgs{batch, 128, 28, 28, 128, 3, 1});
- args.emplace_back(BenchArgs{batch, 128, 28, 28, 512, 1, 1});
-
- args.emplace_back(BenchArgs{batch, 512, 28, 28, 1024, 1, 2});
- args.emplace_back(BenchArgs{batch, 512, 28, 28, 256, 1, 2});
- args.emplace_back(BenchArgs{batch, 1024, 14, 14, 256, 1, 1});
- args.emplace_back(BenchArgs{batch, 256, 14, 14, 256, 3, 1});
- args.emplace_back(BenchArgs{batch, 256, 14, 14, 1024, 1, 1});
- args.emplace_back(BenchArgs{batch, 256, 14, 14, 1024, 1, 2});
-
- args.emplace_back(BenchArgs{batch, 1024, 14, 14, 2048, 1, 2});
- args.emplace_back(BenchArgs{batch, 1024, 14, 14, 512, 1, 2});
- args.emplace_back(BenchArgs{batch, 2048, 7, 7, 512, 1, 1});
- args.emplace_back(BenchArgs{batch, 512, 7, 7, 512, 3, 1});
- args.emplace_back(BenchArgs{batch, 512, 7, 7, 2048, 1, 1});
- return args;
- }
-
- std::vector<BenchArgs> get_detection_bench_args(size_t batch) {
- std::vector<BenchArgs> args;
- args.emplace_back(BenchArgs{batch, 4, 736, 1280, 8, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 184, 320, 16, 3, 1});
- args.emplace_back(BenchArgs{batch, 16, 184, 320, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 184, 320, 16, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 184, 320, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 32, 184, 320, 64, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 92, 160, 64, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 128, 3, 2});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 256, 3, 2});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 46, 80, 128, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 46, 80, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 23, 40, 256, 3, 1});
- args.emplace_back(BenchArgs{batch, 256, 23, 40, 64, 3, 1});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 64, 3, 2});
- args.emplace_back(BenchArgs{batch, 256, 23, 40, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 23, 40, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 8, 12, 20, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 12, 20, 8, 3, 2});
- args.emplace_back(BenchArgs{batch, 8, 6, 10, 8, 3, 1});
- return args;
- }
-
- std::vector<BenchArgs> get_det_first_bench_args(size_t batch) {
- std::vector<BenchArgs> args;
- args.emplace_back(BenchArgs{batch, 4, 736, 1280, 16, 3, 2});
- args.emplace_back(BenchArgs{batch, 16, 384, 640, 16, 3, 1});
- args.emplace_back(BenchArgs{batch, 16, 384, 640, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 1, 1});
- return args;
- }
-
- void benchmark_target_algo(
- Handle* handle, const std::vector<BenchArgs>& args, DType src_dtype,
- DType filter_dtype, DType bias_dtype, DType dst_dtype, const char* algo,
- param::ConvBias::Format format) {
- megdnn_assert(src_dtype.enumv() == filter_dtype.enumv());
- CUBenchmarker<ConvBiasForward> benchmarker(handle);
- CUBenchmarker<ConvBiasForward> benchmarker_cudnn(handle);
- size_t RUNS = 1000;
- benchmarker.set_display(false).set_times(RUNS);
- benchmarker_cudnn.set_display(false).set_times(RUNS);
-
- #define CUDNN_VERSION_STRING \
- "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)
- benchmarker_cudnn.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "DEFAULT:CUDNN:ConvBiasActivation:CUDNN_CONVOLUTION_FWD_"
- "ALGO_IMPLICIT_PRECOMP_"
- "GEMM" CUDNN_VERSION_STRING));
-
- benchmarker.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
- benchmarker_cudnn.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
-
- using Param = ConvBias::Param;
- using Format = Param::Format;
- // helper function to change format
- auto get_tensor_shape = [](TensorShape shape, Format format) -> TensorShape {
- TensorShape ret;
- if (format == Format::NCHW4) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype::Int8()}
- .reshape({shape[0], shape[1] / 4, 4, shape[2], shape[3]})
- .dimshuffle({0, 1, 3, 4, 2}));
- } else if (format == Format::CHWN4) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype::Int8()}
- .reshape({shape[0], shape[1] / 4, 4, shape[2], shape[3]})
- .dimshuffle({1, 3, 4, 0, 2}));
- }
- return ret;
- };
-
- for (auto&& arg : args) {
- Param param;
- param.pad_h = param.pad_w = arg.f / 2;
- param.stride_h = param.stride_w = arg.s;
- param.format = format;
-
- size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
- size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);
-
- benchmarker.set_param(param);
- if (!algo) {
- benchmarker.proxy()->target_execution_policy.algo.reset();
- }
- TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
- filter{arg.co, arg.ci, arg.f, arg.f}, bias{1, arg.co, 1, 1},
- z{arg.n, arg.co, ho, wo}, dst = z;
- float time_in_ms = 0.f;
- if (algo) {
- time_in_ms =
- algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>, CUTimer>(
- benchmarker,
- {get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- {},
- {}},
- algo) /
- RUNS;
- } else {
- time_in_ms = benchmarker.execs(
- {get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- {},
- {}}) /
- RUNS;
- }
- Format format_cudnn = Format::NCHW4;
- param.format = format_cudnn;
- benchmarker_cudnn.set_param(param);
- auto time_in_ms_cudnn = benchmarker_cudnn.execs(
- {get_tensor_shape(src, format_cudnn),
- get_tensor_shape(filter, format_cudnn),
- get_tensor_shape(bias, format_cudnn),
- {},
- {}}) /
- RUNS;
- float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * arg.f / (1e12);
- printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- dst.to_string().c_str(), algo, time_in_ms, (flo / (time_in_ms * 1e-3)),
- time_in_ms_cudnn, (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- printf("bench with z tensor\n");
- if (algo) {
- time_in_ms =
- algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>, CUTimer>(
- benchmarker,
- {get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- get_tensor_shape(z, format),
- {}},
- algo) /
- RUNS;
- } else {
- time_in_ms = benchmarker.execs(
- {get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- get_tensor_shape(z, format),
- {}}) /
- RUNS;
- }
- time_in_ms_cudnn = benchmarker_cudnn.execs(
- {get_tensor_shape(src, format_cudnn),
- get_tensor_shape(filter, format_cudnn),
- get_tensor_shape(bias, format_cudnn),
- get_tensor_shape(z, format_cudnn),
- {}}) /
- RUNS;
- printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- dst.to_string().c_str(), algo, time_in_ms, (flo / (time_in_ms * 1e-3)),
- time_in_ms_cudnn, (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- }
- }
-
- void benchmark_target_algo_with_cudnn_tsc(
- Handle* handle, const std::vector<BenchArgs>& args, DType src_dtype,
- DType filter_dtype, DType bias_dtype, DType dst_dtype, const char* algo,
- param::ConvBias::Format format, bool with_cudnn, const char* change_cudnn_algo,
- param::ConvBias::Format change_cudnn_format, DType change_cudnn_src_dtype,
- DType change_cudnn_filter_dtype, DType change_cudnn_bias_dtype,
- DType change_cudnn_dst_dtype) {
- megdnn_assert(
- (src_dtype.enumv() == filter_dtype.enumv()) ||
- (src_dtype.enumv() == DTypeEnum::Quantized4Asymm &&
- filter_dtype.enumv() == DTypeEnum::QuantizedS4));
- CUBenchmarker<ConvBiasForward> benchmarker(handle);
- CUBenchmarker<ConvBiasForward> benchmarker_cudnn(handle);
- size_t RUNS = 200;
- benchmarker.set_display(false).set_times(RUNS);
- benchmarker.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
-
- benchmarker_cudnn.set_display(false).set_times(RUNS);
-
- std::unique_ptr<OprProxy<ConvBiasForward>> proxy{
- new OprProxy<ConvBiasForward>{true}};
-
- if (!algo) {
- benchmarker.set_proxy(proxy);
- }
- if (change_cudnn_algo) {
- benchmarker_cudnn.set_dtype(0, change_cudnn_src_dtype)
- .set_dtype(1, change_cudnn_filter_dtype)
- .set_dtype(2, change_cudnn_bias_dtype)
- .set_dtype(3, change_cudnn_dst_dtype)
- .set_dtype(4, change_cudnn_dst_dtype);
- } else {
- benchmarker_cudnn.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
- benchmarker_cudnn.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "DEFAULT:CUDNN:ConvBiasActivation:CUDNN_CONVOLUTION_"
- "FWD_"
- "ALGO_IMPLICIT_PRECOMP_GEMM" CUDNN_VERSION_STRING));
- }
- #undef CUDNN_VERSION_STRING
-
- using Param = ConvBias::Param;
- using Format = Param::Format;
- // helper function to change format
- auto get_tensor_shape = [](TensorShape shape, DType dtype,
- Format format) -> TensorShape {
- TensorShape ret;
- if (format == Format::NCHW4) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype}
- .reshape({shape[0], shape[1] / 4, 4, shape[2], shape[3]})
- .dimshuffle({0, 1, 3, 4, 2}));
- } else if (format == Format::NCHW32) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype}
- .reshape({shape[0], shape[1] / 32, 32, shape[2], shape[3]})
- .dimshuffle({0, 1, 3, 4, 2}));
- } else if (format == Format::NCHW64) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype}
- .reshape({shape[0], shape[1] / 64, 64, shape[2], shape[3]})
- .dimshuffle({0, 1, 3, 4, 2}));
- } else if (format == Format::CHWN4) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype}
- .reshape({shape[0], shape[1] / 4, 4, shape[2], shape[3]})
- .dimshuffle({1, 3, 4, 0, 2}));
- } else if (format == Format::NHWC) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype}.dimshuffle({0, 2, 3, 1}));
- }
- return ret;
- };
-
- for (auto&& arg : args) {
- Param param;
- param.pad_h = param.pad_w = arg.f / 2;
- param.stride_h = param.stride_w = arg.s;
- param.format = format;
-
- size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
- size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);
-
- benchmarker.set_param(param);
- if (!algo) {
- benchmarker.proxy()->target_execution_policy.algo.reset();
- }
- TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
- filter{arg.co, arg.ci, arg.f, arg.f}, bias{1, arg.co, 1, 1},
- z{arg.n, arg.co, ho, wo}, dst = z;
- // skip testcase which cannot enable nchw32 tensorcore
- if (format == Format::NCHW32 && (arg.co % 32 != 0 || arg.ci % 32 != 0))
- continue;
- // skip testcase which cannot enable nchw32 tensorcore
- if (format == Format::NCHW64 && (arg.co % 64 != 0 || arg.ci % 64 != 0))
- continue;
- // skip testcase which cannot enable nchw4/chwn4 tensorcore
- if ((format == Format::CHWN4 || format == Format::NCHW4) && (arg.ci % 16 != 0))
- continue;
- // skip testcase which cannot enable nhwc tensorcore
- if ((format == Format::NHWC) && (arg.ci % 4 != 0 || arg.co % 4 != 0))
- continue;
- Format format_cudnn =
- arg.ci % 32 == 0 && arg.co % 32 == 0 ? Format::NCHW32 : Format::NCHW4;
- if (change_cudnn_algo) {
- format_cudnn = change_cudnn_format;
- }
-
- param.format = format_cudnn;
- benchmarker_cudnn.set_param(param);
-
- float time_in_ms = 0.f;
- if (algo) {
- time_in_ms =
- algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>, CUTimer>(
- benchmarker,
- {get_tensor_shape(src, src_dtype, format),
- get_tensor_shape(filter, filter_dtype, format),
- get_tensor_shape(bias, bias_dtype, format),
- {},
- {}},
- algo) /
- RUNS;
- } else {
- time_in_ms = benchmarker.execs(
- {get_tensor_shape(src, src_dtype, format),
- get_tensor_shape(filter, filter_dtype, format),
- get_tensor_shape(bias, bias_dtype, format),
- {},
- {}}) /
- RUNS;
- }
- float time_in_ms_cudnn = 0;
- if (with_cudnn) {
- if (change_cudnn_algo) {
- time_in_ms_cudnn =
- algo_benchmark<
- ConvBiasForward, OprProxy<ConvBiasForward>, CUTimer>(
- benchmarker_cudnn,
- {get_tensor_shape(src, src_dtype, format_cudnn),
- get_tensor_shape(filter, filter_dtype, format_cudnn),
- get_tensor_shape(bias, bias_dtype, format_cudnn),
- {},
- {}},
- change_cudnn_algo) /
- RUNS;
- } else {
- time_in_ms_cudnn =
- benchmarker_cudnn.execs(
- {get_tensor_shape(src, src_dtype, format_cudnn),
- get_tensor_shape(filter, filter_dtype, format_cudnn),
- get_tensor_shape(bias, bias_dtype, format_cudnn),
- {},
- {}}) /
- RUNS;
- }
- }
-
- float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * arg.f / (1e12);
- printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- dst.to_string().c_str(), algo, time_in_ms, (flo / (time_in_ms * 1e-3)),
- time_in_ms_cudnn, (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- printf("bench with z tensor\n");
- if (algo) {
- time_in_ms =
- algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>, CUTimer>(
- benchmarker,
- {get_tensor_shape(src, src_dtype, format),
- get_tensor_shape(filter, filter_dtype, format),
- get_tensor_shape(bias, bias_dtype, format),
- get_tensor_shape(z, src_dtype, format),
- {}},
- algo) /
- RUNS;
- } else {
- time_in_ms = benchmarker.execs(
- {get_tensor_shape(src, src_dtype, format),
- get_tensor_shape(filter, filter_dtype, format),
- get_tensor_shape(bias, bias_dtype, format),
- get_tensor_shape(z, src_dtype, format),
- {}}) /
- RUNS;
- }
- time_in_ms_cudnn = 0;
- if (with_cudnn) {
- if (change_cudnn_algo) {
- time_in_ms_cudnn =
- algo_benchmark<
- ConvBiasForward, OprProxy<ConvBiasForward>, CUTimer>(
- benchmarker_cudnn,
- {get_tensor_shape(src, src_dtype, format_cudnn),
- get_tensor_shape(filter, filter_dtype, format_cudnn),
- get_tensor_shape(bias, bias_dtype, format_cudnn),
- get_tensor_shape(z, src_dtype, format_cudnn),
- {}},
- change_cudnn_algo) /
- RUNS;
- } else {
- time_in_ms_cudnn =
- benchmarker_cudnn.execs(
- {get_tensor_shape(src, src_dtype, format_cudnn),
- get_tensor_shape(filter, filter_dtype, format_cudnn),
- get_tensor_shape(bias, bias_dtype, format_cudnn),
- get_tensor_shape(z, src_dtype, format_cudnn),
- {}}) /
- RUNS;
- }
- }
- printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- dst.to_string().c_str(), algo, time_in_ms, (flo / (time_in_ms * 1e-3)),
- time_in_ms_cudnn, (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- }
- }
- #endif
- } // namespace conv
- } // namespace test
- } // namespace megdnn
- #undef V1
- #undef V
|