|
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- from typing import Tuple, Union
-
- import numpy as np
-
- from ... import module as Float
- from ...core.tensor import dtype
- from ...functional.nn import conv_bias_activation, pad
- from ...functional.quantized import conv_transpose2d
- from ...tensor import Parameter
- from ..qat import conv as QAT
- from .module import QuantizedModule
-
-
- class Conv2d(Float.Conv2d, QuantizedModule):
- r"""Quantized version of :class:`~.qat.Conv2d`.
-
- Applies a 2D convolution over a quantized input tensor, used for inference only.
-
- The parameter is same with :class:`~.module.Conv2d`.
- """
-
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- kernel_size: Union[int, Tuple[int, int]],
- stride: Union[int, Tuple[int, int]] = 1,
- padding: Union[int, Tuple[int, int]] = 0,
- dilation: Union[int, Tuple[int, int]] = 1,
- groups: int = 1,
- conv_mode: str = "cross_correlation",
- compute_mode: str = "default",
- dtype=None,
- padding_mode: str = "zeros",
- **kwargs
- ):
- super().__init__(
- in_channels,
- out_channels,
- kernel_size,
- stride,
- padding,
- dilation,
- groups,
- True,
- conv_mode,
- compute_mode,
- padding_mode,
- )
- self.output_dtype = dtype
-
- def calc_conv_quantized(self, inp, nonlinear_mode="identity"):
- assert self.padding_mode in [
- "zeros",
- "reflect",
- "replicate",
- ]
- inp_scale = dtype.get_scale(inp.dtype)
- w_scale = dtype.get_scale(self.weight.dtype)
- bias_scale = inp_scale * w_scale
- if self.padding_mode != "zeros":
- return conv_bias_activation(
- pad(inp, self.get_pad_witdth(), self.padding_mode),
- self.weight,
- self.bias.astype(dtype.qint32(bias_scale)),
- self.output_dtype,
- self.stride,
- 0,
- self.dilation,
- self.groups,
- conv_mode=self.conv_mode,
- compute_mode=self.compute_mode,
- nonlinear_mode=nonlinear_mode,
- )
- return conv_bias_activation(
- inp,
- self.weight,
- self.bias.astype(dtype.qint32(bias_scale)),
- self.output_dtype,
- self.stride,
- self.padding,
- self.dilation,
- self.groups,
- conv_mode=self.conv_mode,
- compute_mode=self.compute_mode,
- nonlinear_mode=nonlinear_mode,
- )
-
- @classmethod
- def from_qat_module(cls, qat_module: QAT.Conv2d):
- r"""
- Return a :class:`~.QuantizedModule` instance converted from a
- :class:`~.QATModule` instance.
- """
- output_dtype = qat_module.get_activation_dtype()
- qconv = cls(
- qat_module.in_channels,
- qat_module.out_channels,
- qat_module.kernel_size,
- qat_module.stride,
- qat_module.padding,
- qat_module.dilation,
- qat_module.groups,
- dtype=output_dtype,
- padding_mode=qat_module.padding_mode,
- name=qat_module.name,
- )
- weight = qat_module.weight.astype(qat_module.get_weight_dtype())
- qconv.weight = Parameter(weight.numpy(), name=qat_module.weight.name)
- if qat_module.bias is not None:
- qconv.bias = Parameter(qat_module.bias.numpy(), name=qat_module.bias.name)
- else:
- qconv.bias = Parameter(
- np.zeros(qat_module._infer_bias_shape(), dtype=np.float32)
- )
- return qconv
-
- def forward(self, inp):
- return self.calc_conv_quantized(inp, nonlinear_mode="identity")
-
-
- class ConvRelu2d(Conv2d):
- r"""Quantized version of :class:`~.qat.ConvRelu2d`."""
-
- def forward(self, inp):
- return self.calc_conv_quantized(inp, nonlinear_mode="relu")
-
-
- class ConvTranspose2d(Float.ConvTranspose2d, QuantizedModule):
- r"""Quantized version of :class:`~.qat.ConvTranspose2d`.
-
- Applies a 2D transposed convolution over a quantized input tensor, used
- for inference only.
-
- The parameter is same with :class:`~.module.ConvTranspose2d` but dtype.
-
- Args:
- dtype: data type of the output, should be qint8.
- """
-
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- kernel_size: Union[int, Tuple[int, int]],
- stride: Union[int, Tuple[int, int]] = 1,
- padding: Union[int, Tuple[int, int]] = 0,
- dilation: Union[int, Tuple[int, int]] = 1,
- groups: int = 1,
- bias: bool = True,
- conv_mode: str = "cross_correlation",
- compute_mode: str = "default",
- dtype=None,
- **kwargs
- ):
- super().__init__(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- dilation=dilation,
- groups=groups,
- bias=bias,
- conv_mode=conv_mode,
- compute_mode=compute_mode,
- )
- self.output_dtype = dtype
-
- @classmethod
- def from_qat_module(cls, qat_module: QAT.ConvTranspose2d):
- r"""
- return a :class:`~.QuantizedModule` instance converted from a
- :class:`~.QATModule` instance.
- """
- output_dtype = qat_module.get_activation_dtype()
- qconv = cls(
- qat_module.in_channels,
- qat_module.out_channels,
- qat_module.kernel_size,
- qat_module.stride,
- qat_module.padding,
- qat_module.dilation,
- qat_module.groups,
- qat_module.bias is not None,
- qat_module.conv_mode,
- qat_module.compute_mode,
- dtype=output_dtype,
- name=qat_module.name,
- )
- weight = qat_module.weight.astype(qat_module.get_weight_dtype())
- qconv.weight = Parameter(weight.numpy(), name=qat_module.weight.name)
- qconv.bias = (
- Parameter(qat_module.bias.numpy(), name=qat_module.bias.name)
- if qat_module.bias is not None
- else None
- )
- return qconv
-
- def calc_conv_transpose2d_quantized(self, inp):
- if self.bias is not None:
- inp_scale = dtype.get_scale(inp.dtype)
- w_scale = dtype.get_scale(self.weight.dtype)
- bias_scale = inp_scale * w_scale
-
- return conv_transpose2d(
- inp=inp,
- weight=self.weight,
- bias=self.bias.astype(dtype.qint32(bias_scale))
- if self.bias is not None
- else None,
- dtype=self.output_dtype,
- stride=self.stride,
- padding=self.padding,
- dilation=self.dilation,
- groups=self.groups,
- conv_mode=self.conv_mode,
- compute_mode=self.compute_mode,
- )
-
- def forward(self, inp):
- return self.calc_conv_transpose2d_quantized(inp)
|