|
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- from ...tensor import Parameter
- from ..qat import conv_bn as QAT
- from .conv import Conv2d
-
-
- class _ConvBnActivation2d(Conv2d):
- r"""Applies a 2D convolution over a quantized input tensor, used for inference only.
- """
-
- @classmethod
- def from_qat_module(cls, qat_module: QAT._ConvBnActivation2d):
- r"""
- Return a :class:`~.QuantizedModule` instance converted from a
- :class:`~.QATModule` instance.
- """
- output_dtype = qat_module.get_activation_dtype()
- qconv = cls(
- qat_module.conv.in_channels,
- qat_module.conv.out_channels,
- qat_module.conv.kernel_size,
- qat_module.conv.stride,
- qat_module.conv.padding,
- qat_module.conv.dilation,
- qat_module.conv.groups,
- dtype=output_dtype,
- name=qat_module.name,
- padding_mode=qat_module.conv.padding_mode,
- )
- w_fold, b_fold = qat_module.fold_weight_bias(
- qat_module.bn.running_mean, qat_module.bn.running_var
- )
- weight = w_fold.astype(qat_module.get_weight_dtype())
- qconv.weight = Parameter(weight.numpy(), name=qat_module.conv.weight.name)
- qconv.bias = Parameter(b_fold.numpy())
- if qat_module.conv.bias is not None:
- qconv.bias.name = qat_module.conv.bias.name
- return qconv
-
-
- class ConvBn2d(_ConvBnActivation2d):
- r"""Quantized version of :class:`~.qat.ConvBn2d`."""
-
- def forward(self, inp):
- return self.calc_conv_quantized(inp, nonlinear_mode="identity")
-
-
- class ConvBnRelu2d(_ConvBnActivation2d):
- r"""Quantized version of :class:`~.qat.ConvBnRelu2d`."""
-
- def forward(self, inp):
- return self.calc_conv_quantized(inp, nonlinear_mode="relu")
|