|
- /**
- * \file dnn/test/arm_common/conv_bias.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "megdnn/dtype.h"
- #include "test/arm_common/fixture.h"
-
- #include "megdnn/opr_param_defs.h"
- #include "megdnn/oprs.h"
- #include "src/fallback/conv_bias/common.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/conv_bias.h"
- #include "test/common/rng.h"
- #include "test/common/task_record_check.h"
- #include "test/common/tensor.h"
- #include "test/common/workspace_wrapper.h"
-
- using namespace megdnn;
- using namespace test;
- using namespace conv_bias;
-
- //! TODO this algo current does not support multithread
- TEST_F(ARM_COMMON, CONVBIAS_INT8_INT8_INT16_STRIDE2F2) {
- checker_conv_bias_int8x8x16(
- get_conv_bias_args({2}, 2, true, true, true), handle(), "I8816STRD2F2");
- }
-
- TEST_F(ARM_COMMON, CONV_BIAS_MATMUL) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_quantized_args();
- Checker<ConvBiasForward> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>("S8MATMUL"));
- #if MEGDNN_ARMV7
- checker.set_epsilon(1);
- #endif
- UniformIntRNG rng{-50, 50};
- for (auto&& arg : args) {
- if (arg.bias.ndim == 4 && arg.bias[2] != 1 && arg.bias[3] != 1)
- continue;
- checker.set_dtype(0, dtype::QuantizedS8(0.41113496f))
- .set_dtype(1, dtype::QuantizedS8(0.01887994f))
- .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f))
- .set_dtype(4, dtype::QuantizedS8(0.49550694f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(ARM_COMMON, CONV_BIAS_RECORD) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_quantized_args();
- TaskRecordChecker<ConvBiasForward> checker(0);
- #if MEGDNN_ARMV7
- checker.set_epsilon(1);
- #endif
- UniformIntRNG rng{-50, 50};
- for (auto&& arg : args) {
- if (arg.bias.ndim == 4 && arg.bias[2] != 1 && arg.bias[3] != 1)
- continue;
- checker.set_dtype(0, dtype::QuantizedS8(0.41113496f))
- .set_dtype(1, dtype::QuantizedS8(0.01887994f))
- .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f))
- .set_dtype(4, dtype::QuantizedS8(0.49550694f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(ARM_COMMON, CONV_BIAS_WINOGRAD_F63_4) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4);
- }
-
- TEST_F(ARM_COMMON, CONV_BIAS_WINOGRAD_F63_4_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(
- handle());
-
- check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4);
- }
-
- #define CONV_BIAS_MATMUL_QU8_MODE(MODE) \
- using namespace conv_bias; \
- std::vector<TestArg> args = get_quantized_args_with_nlmode(MODE); \
- Checker<ConvBiasForward> checker(handle()); \
- checker.set_before_exec_callback( \
- conv_bias::ConvBiasAlgoChecker<ConvBias>("QU8MATMUL")); \
- UniformIntRNG rng{0, 127}; \
- for (auto&& arg : args) { \
- if (arg.bias.ndim == 4 && arg.bias[2] != 1 && arg.bias[3] != 1) \
- continue; \
- checker.set_dtype(0, dtype::Quantized8Asymm(2.5f, static_cast<uint8_t>(127))) \
- .set_dtype(1, dtype::Quantized8Asymm(2.7f, static_cast<uint8_t>(126))) \
- .set_dtype(2, dtype::QuantizedS32(6.75f)) \
- .set_dtype( \
- 4, dtype::Quantized8Asymm(60.25f, static_cast<uint8_t>(125))) \
- .set_rng(0, &rng) \
- .set_rng(1, &rng) \
- .set_rng(2, &rng) \
- .set_param(arg.param) \
- .execs({arg.src, arg.filter, arg.bias, {}, {}}); \
- }
-
- #define MODE_STR(mode) param::ConvBias::NonlineMode::mode
-
- #define CB_TEST(MODE) \
- TEST_F(ARM_COMMON, CONV_BIAS_MATMUL_QU8_##MODE) { \
- CONV_BIAS_MATMUL_QU8_MODE(MODE_STR(MODE)); \
- }
-
- CB_TEST(IDENTITY);
- CB_TEST(RELU);
- CB_TEST(H_SWISH);
-
- #undef MODE_STR
- #undef CB_TEST
- #undef CONV_BIAS_MATMUL_QU8_MODE
-
- #if MEGDNN_WITH_BENCHMARK
-
- static void benchmark_convbias(
- Handle* handle, std::string int_name, std::string float_name,
- bool is_fp32 = false, bool is_8x8x16 = false) {
- constexpr size_t RUNS = 30;
-
- Benchmarker<ConvBias> benchmarker_int(handle);
- benchmarker_int.set_times(RUNS)
- .set_dtype(0, dtype::QuantizedS8(2.5))
- .set_dtype(1, dtype::QuantizedS8(2.5))
- .set_dtype(2, dtype::QuantizedS32(6.25))
- .set_dtype(4, dtype::QuantizedS8(60.25))
- .set_display(false);
- benchmarker_int.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(int_name.c_str()));
-
- Benchmarker<ConvBias> benchmarker_float(handle);
- benchmarker_float.set_display(false).set_times(RUNS);
- benchmarker_float.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(float_name.c_str()));
-
- Benchmarker<ConvBias> benchmarker_nchw44(handle);
- if (is_fp32) {
- benchmarker_nchw44.set_times(RUNS)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_dtype(4, dtype::Float32())
- .set_display(false);
- } else if (is_8x8x16) {
- benchmarker_nchw44.set_times(RUNS)
- .set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int16())
- .set_dtype(4, dtype::Int16())
- .set_display(false);
- benchmarker_int.set_times(RUNS)
- .set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int16())
- .set_dtype(4, dtype::Int16())
- .set_display(false);
-
- } else {
- benchmarker_nchw44.set_times(RUNS)
- .set_dtype(0, dtype::QuantizedS8(2.5))
- .set_dtype(1, dtype::QuantizedS8(2.5))
- .set_dtype(2, dtype::QuantizedS32(6.25))
- .set_dtype(4, dtype::QuantizedS8(60.25))
- .set_display(false);
- }
- auto nchw44_algo_regx = ".*(DIRECT|NCHW_NCHW44).*";
- #if MGB_ENBALE_DOT
- if (!is_fp32) {
- nchw44_algo_regx = ".*DOT.*";
- }
- #endif
- benchmarker_nchw44.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(nchw44_algo_regx));
-
- auto run = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t stride, bool input_nchw = false) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- if (is_8x8x16) {
- param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- }
- param.stride_h = stride;
- param.stride_w = stride;
-
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
- auto OH = (H + 2 * param.pad_h - FS) / static_cast<size_t>(param.stride_h) + 1;
- auto OW = (W + 2 * param.pad_w - FS) / static_cast<size_t>(param.stride_w) + 1;
- TensorShape src({N, IC, H, W}), filter({OC, IC, FS, FS}), bias({1, OC, 1, 1}),
- dst({N, OC, OH, OW});
- if (is_8x8x16) {
- bias = {};
- }
- param.format = param::ConvBias::Format::NCHW;
-
- auto int_used =
- benchmarker_int.set_param(param).exec({src, filter, bias, {}, dst}) /
- RUNS;
- auto float_used =
- benchmarker_float.set_param(param).exec({src, filter, bias, {}, dst}) /
- RUNS;
- param.format = param::ConvBias::Format::NCHW44;
- src = {N, IC / 4, H, W, 4};
- filter = {OC / 4, IC / 4, FS, FS, 4, 4};
- if (input_nchw) {
- src = {N, IC, H, W};
- filter = {OC / 4, FS, FS, IC, 4};
- }
-
- bias = {1, OC / 4, 1, 1, 4};
- if (is_8x8x16) {
- bias = {};
- }
- dst = {N, OC / 4, OH, OW, 4};
- auto int_nchw44_used =
- benchmarker_nchw44.set_param(param).exec({src, filter, bias, {}, dst}) /
- RUNS;
- float computations = IC * (FS * FS) * dst.total_nr_elems() * 2 * 1e-6;
- printf("run: %s %s %s->%s \n", src.to_string().c_str(),
- filter.to_string().c_str(), bias.to_string().c_str(),
- dst.to_string().c_str());
- printf("float: %f ms %f Gflops, ", float_used, computations / float_used);
- printf("int_nchw: %f ms %f Gflops, ", int_used, computations / int_used);
- auto speed_up = int_used / int_nchw44_used;
- if (is_fp32) {
- speed_up = float_used / int_nchw44_used;
- printf("fp32_nchw44: %f ms %f Gflops %f speedup, ", int_nchw44_used,
- computations / int_nchw44_used, speed_up);
- } else {
- printf("int_nchw44: %f ms %f Gflops %f speedup, ", int_nchw44_used,
- computations / int_nchw44_used, speed_up);
- }
- printf("\n");
- };
-
- if (is_fp32) {
- run(1, 1, 4, 112, 112, 2, 2, true);
- run(1, 3, 24, 224, 224, 3, 2, true);
- run(1, 3, 32, 224, 224, 3, 2, true);
- run(1, 3, 64, 224, 224, 7, 2, true);
-
- run(1, 1, 4, 112, 112, 2, 1, true);
- run(1, 3, 32, 224, 224, 3, 1, true);
- run(1, 3, 64, 224, 224, 3, 1, true);
- run(1, 3, 64, 224, 224, 7, 1, true);
-
- run(1, 64, 128, 56, 56, 3, 2, false);
- run(1, 128, 256, 28, 28, 3, 2, false);
- run(1, 256, 512, 14, 14, 3, 2, false);
-
- run(1, 128, 128, 28, 28, 3, 1, false);
- run(1, 256, 256, 14, 14, 3, 1, false);
- run(1, 512, 512, 7, 7, 3, 1, false);
- } else {
- run(1, 1, 4, 112, 112, 2, 2, true);
- run(1, 3, 8, 224, 224, 3, 2, true);
- run(1, 3, 32, 224, 224, 3, 2, true);
- run(1, 3, 32, 224, 224, 5, 2, true);
- run(1, 3, 64, 224, 224, 7, 2, true);
- run(1, 1, 4, 112, 112, 2, 1, true);
- run(1, 3, 32, 224, 224, 3, 1, true);
- run(1, 3, 32, 224, 224, 5, 1, true);
- run(1, 3, 64, 224, 224, 7, 1, true);
-
- run(1, 64, 128, 56, 56, 3, 2, false);
- run(1, 128, 256, 28, 28, 3, 2, false);
- run(1, 256, 512, 14, 14, 3, 2, false);
-
- run(1, 128, 128, 28, 28, 3, 1, false);
- run(1, 256, 256, 14, 14, 3, 1, false);
- run(1, 512, 512, 7, 7, 3, 1, false);
-
- for (size_t stride : {1}) {
- printf("stride %zu\n", stride);
- for (size_t filter_size : {2, 3, 5, 7}) {
- for (size_t img_size : {32}) {
- for (size_t channel : {8, 16, 32, 64, 128, 256}) {
- run(1, channel, channel, img_size, img_size, filter_size,
- stride, false);
- }
- }
- }
- }
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_NCHW44) {
- #if MEGDNN_AARCH64
- benchmark_convbias(
- handle(), "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16:384",
- "IM2COLMATMUL:AARCH64_F32K8X12X1:192", true);
- benchmark_convbias(
- handle(), "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16:384",
- "IM2COLMATMUL:AARCH64_F32K8X12X1:192", false);
- benchmark_convbias(
- handle(), "IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16:192",
- "IM2COLMATMUL:AARCH64_F32K8X12X1:192", false, true);
- #else
- benchmark_convbias(
- handle(), "IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8:384",
- "IM2COLMATMUL:ARMV7_F32:192", true);
- benchmark_convbias(
- handle(), "IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8:384",
- "IM2COLMATMUL:ARMV7_F32:192", false);
- benchmark_convbias(
- handle(), "IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8:384",
- "IM2COLMATMUL:ARMV7_F32:192", false, true);
- #endif
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, BENCHMARK_CONVBIAS_NCHW44) {
- #if MEGDNN_AARCH64
- benchmark_convbias(
- handle(), "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16:384",
- "IM2COLMATMUL:AARCH64_F32K8X12X1:192", true);
- benchmark_convbias(
- handle(), "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16:384",
- "IM2COLMATMUL:AARCH64_F32K8X12X1:192", false);
- #else
- benchmark_convbias(
- handle(), "IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8:384",
- "IM2COLMATMUL:ARMV7_F32:192", true);
- benchmark_convbias(
- handle(), "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16:384",
- "IM2COLMATMUL:ARMV7_F32:192", false);
- #endif
- }
-
- #endif
- TEST_F(ARM_COMMON, CONV_BIAS_MATMUL_QS8) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_quantized_args();
- Checker<ConvBiasForward> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>("S8MATMUL"));
-
- #if MEGDNN_ARMV7
- checker.set_epsilon(1);
- #endif
- UniformIntRNG rng{0, 255};
- for (auto&& arg : args) {
- if (arg.bias.ndim == 4 && arg.bias[2] != 1 && arg.bias[3] != 1)
- continue;
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.7f))
- .set_dtype(2, dtype::QuantizedS32(6.75f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- #if MEGDNN_ARMV7
- TEST_F(ARM_COMMON, CONV_BIAS_RESCALE_OP) {
- using namespace conv_bias;
-
- Checker<ConvBias> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("S8MATMUL"));
- checker.set_epsilon(1).set_max_avg_error(1e-2).set_max_avg_biased_error(1e-3);
- UniformIntRNG rng{-128, 127};
- checker.set_dtype(0, dtype::QuantizedS8(0.41113496f))
- .set_dtype(1, dtype::QuantizedS8(0.01887994f))
- .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f))
- .set_dtype(4, dtype::QuantizedS8(0.49550694f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = 0;
- param.pad_w = 0;
- param.nonlineMode = NonlineMode::IDENTITY;
-
- //! Unary op
- checker.set_param(param).exec(
- {TensorShape{2, 1, 128, 128},
- TensorShape{16, 1, 2, 2},
- TensorShape{},
- TensorShape{},
- {}});
- //! Binary op
- checker.set_param(param).exec(
- {TensorShape{2, 1, 128, 128},
- TensorShape{16, 1, 2, 2},
- TensorShape{1, 16, 1, 1},
- TensorShape{},
- {}});
- }
- #endif
-
- #if MEGDNN_WITH_BENCHMARK
-
- void benchmark_im2col(
- const char* algo_name, const char* im2col_name, Handle* handle, size_t kernel,
- size_t pack_size = 1) {
- auto&& args = get_winograd_benchmark_args(kernel, pack_size);
- using namespace conv_bias;
- constexpr size_t RUN = 10;
- Benchmarker<ConvBias> benchmark(handle);
- benchmark.set_display(false);
- benchmark.set_times(RUN);
-
- Benchmarker<ConvBias> benchmark_im2col(handle);
- benchmark_im2col.set_display(false);
- benchmark_im2col.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- benchmark.set_param(arg.param);
- auto used = algo_benchmark<ConvBias>(
- benchmark, {arg.src, arg.filter, {}, {}, {}}, algo_name) /
- RUN;
- benchmark_im2col.set_param(arg.param);
- auto used_im2col = algo_benchmark<ConvBias>(
- benchmark_im2col, {arg.src, arg.filter, {}, {}, {}},
- im2col_name) /
- RUN;
-
- printf("%s %s: normal: %f ms %f Gflops im2col: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used,
- computations / used, used_im2col, computations / used_im2col,
- used / used_im2col);
- }
- }
-
- void benchmark_im2col_single_algo(
- const char* im2col_name, Handle* handle, size_t kernel, size_t pack_size = 1) {
- std::vector<conv_bias::TestArg> args;
- auto pack = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) {
- if (ic % pack_size != 0 || oc % pack_size != 0)
- return;
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
-
- args.push_back(conv_bias::TestArg{
- param,
- TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- {1, oc, 1, 1}});
- };
- pack(1, 64, 100, 100, kernel, 1);
- pack(8, 64, 100, 100, kernel, 1);
- pack(16, 64, 100, 100, kernel, 1);
- pack(32, 64, 100, 100, kernel, 1);
- pack(64, 64, 100, 100, kernel, 1);
- pack(128, 64, 100, 100, kernel, 1);
- pack(256, 64, 100, 100, kernel, 1);
- pack(512, 64, 100, 100, kernel, 1);
- pack(1024, 64, 100, 100, kernel, 1);
- pack(1, 64, 10, 10, kernel, 1);
- pack(8, 64, 10, 10, kernel, 1);
- pack(16, 64, 10, 10, kernel, 1);
- pack(32, 64, 10, 10, kernel, 1);
- pack(64, 64, 10, 10, kernel, 1);
- pack(128, 64, 10, 10, kernel, 1);
- pack(256, 64, 10, 10, kernel, 1);
- pack(512, 64, 10, 10, kernel, 1);
- pack(1024, 64, 10, 10, kernel, 1);
- pack(1, 16, 10, 10, kernel, 1);
- pack(8, 16, 10, 10, kernel, 1);
- pack(16, 16, 10, 10, kernel, 1);
- pack(32, 16, 10, 10, kernel, 1);
- pack(64, 16, 10, 10, kernel, 1);
- pack(128, 16, 10, 10, kernel, 1);
- pack(256, 16, 10, 10, kernel, 1);
- pack(512, 16, 10, 10, kernel, 1);
- pack(1024, 16, 10, 10, kernel, 1);
-
- using namespace conv_bias;
- constexpr size_t RUN = 20;
-
- Benchmarker<ConvBias> benchmark_im2col(handle);
- benchmark_im2col.set_display(false);
- benchmark_im2col.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- benchmark_im2col.set_param(arg.param);
- auto used_im2col = algo_benchmark<ConvBias>(
- benchmark_im2col, {arg.src, arg.filter, {}, {}, {}},
- im2col_name) /
- RUN;
-
- printf("%s %s: im2col: %f ms %f GFlops \n", arg.src.to_string().c_str(),
- arg.filter.to_string().c_str(), used_im2col, computations / used_im2col);
- }
- }
-
- void benchmark_nchw44_8x8x16_vs_8x8x32(
- const char* im2col_name, Handle* handle, size_t kernel, size_t stride,
- size_t pack_size = 1) {
- megdnn_assert(stride == 1 || stride == 2, "only support stride 1 or 2");
- std::vector<conv_bias::TestArg> args;
- auto pack = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) {
- if (ic % pack_size != 0 || oc % pack_size != 0)
- return;
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.format = param::ConvBias::Format::NCHW44;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = p;
- param.pad_w = p;
- param.sparse = param::ConvBias::Sparse::DENSE;
- args.push_back(conv_bias::TestArg{
- param,
- TensorShape{1, ic / 4, h, w, 4},
- TensorShape{oc / 4, ic / 4, kernel, kernel, 4, 4},
- {1, oc / 4, 1, 1, 4}});
- };
- pack(1, 64, 56, 56, kernel, 0);
- pack(8, 64, 56, 56, kernel, 0);
- pack(16, 64, 56, 56, kernel, 1);
- pack(32, 64, 56, 56, kernel, 1);
- pack(1, 64, 100, 100, kernel, 1);
- pack(8, 64, 100, 100, kernel, 1);
- pack(1, 64, 100, 100, kernel, 0);
- pack(8, 64, 100, 100, kernel, 0);
- pack(16, 64, 100, 100, kernel, 1);
- pack(32, 64, 100, 100, kernel, 1);
- pack(64, 64, 100, 100, kernel, 1);
- pack(128, 64, 100, 100, kernel, 1);
- pack(256, 64, 100, 100, kernel, 1);
- pack(512, 64, 100, 100, kernel, 1);
- pack(1024, 64, 100, 100, kernel, 1);
- pack(1, 32, 200, 200, kernel, 1);
- pack(8, 64, 200, 200, kernel, 1);
- pack(1, 32, 200, 200, kernel, 0);
- pack(8, 64, 200, 200, kernel, 0);
- pack(16, 96, 200, 200, kernel, 1);
- pack(32, 32, 200, 200, kernel, 1);
- pack(64, 64, 200, 200, kernel, 1);
- pack(128, 96, 200, 200, kernel, 1);
- pack(1, 64, 10, 10, kernel, 1);
- pack(8, 64, 10, 10, kernel, 1);
- pack(16, 64, 10, 10, kernel, 1);
- pack(32, 64, 10, 10, kernel, 1);
- pack(64, 64, 10, 10, kernel, 1);
- pack(128, 64, 10, 10, kernel, 1);
- pack(256, 64, 10, 10, kernel, 1);
- pack(512, 64, 10, 10, kernel, 1);
- pack(1024, 64, 10, 10, kernel, 1);
-
- using namespace conv_bias;
- constexpr size_t RUN = 20;
-
- Benchmarker<ConvBias> benchmark_im2col(handle);
- benchmark_im2col.set_display(false);
- benchmark_im2col.set_times(RUN);
-
- Benchmarker<ConvBias> benchmark_8832(handle);
- benchmark_8832.set_display(false);
- benchmark_8832.set_times(RUN);
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 * 4 /
- (1024 * 1024 * 1024) * 1e3;
-
- benchmark_im2col.set_param(arg.param);
- benchmark_im2col.set_dtype(0, dtype::Int8());
- benchmark_im2col.set_dtype(1, dtype::Int8());
- benchmark_im2col.set_dtype(2, dtype::Int16());
- benchmark_im2col.set_dtype(4, dtype::Int16());
- auto used_8816 = algo_benchmark<ConvBias>(
- benchmark_im2col, {arg.src, arg.filter, {}, {}, {}},
- im2col_name) /
- RUN;
- benchmark_8832.set_param(arg.param);
- benchmark_8832.set_dtype(0, dtype::QuantizedS8(2.5));
- benchmark_8832.set_dtype(1, dtype::QuantizedS8(2.5));
- benchmark_8832.set_dtype(2, dtype::QuantizedS32(6.25));
- benchmark_8832.set_dtype(4, {});
- auto used_8832 = algo_benchmark<ConvBias>(
- benchmark_8832, {arg.src, arg.filter, {}, {}, {}},
- "S8_NCHW44_DIRECT") /
- RUN;
-
- printf("%s %s: 8816: %f ms %f GFlops ", arg.src.to_string().c_str(),
- arg.filter.to_string().c_str(), used_8816, computations / used_8816);
- printf("%s %s: 8832: %f ms %f GFlops ", arg.src.to_string().c_str(),
- arg.filter.to_string().c_str(), used_8832, computations / used_8832);
- printf("speedup %f \n", used_8832 / used_8816);
- }
- }
-
- void BENCHMARK_IM2COL_NCHW44_VS_NCHW(
- const char* algo_name, const char* im2col_name, Handle* handle, size_t kernel,
- DType src_type, DType dst_type) {
- auto&& args = get_winograd_benchmark_args(kernel, 4);
- using namespace conv_bias;
- constexpr size_t RUN = 10;
- Benchmarker<ConvBias> benchmark(handle);
- benchmark.set_display(false);
- benchmark.set_times(RUN);
- benchmark.set_dtype(0, src_type);
- benchmark.set_dtype(1, src_type);
- benchmark.set_dtype(2, dst_type);
- benchmark.set_dtype(4, dst_type);
-
- Benchmarker<ConvBias> benchmark_im2col(handle);
- benchmark_im2col.set_display(false);
- benchmark_im2col.set_times(RUN);
- benchmark_im2col.set_dtype(0, src_type);
- benchmark_im2col.set_dtype(1, src_type);
- benchmark_im2col.set_dtype(2, dst_type);
- benchmark_im2col.set_dtype(4, dst_type);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
- std::vector<conv_bias::TestArg> nchw44param;
-
- benchmark.set_param(arg.param);
- auto used = algo_benchmark<ConvBias>(
- benchmark, {arg.src, arg.filter, {}, {}, {}}, algo_name) /
- RUN;
-
- arg.param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- arg.param.format = param::ConvBias::Format::NCHW44;
- benchmark_im2col.set_param(arg.param);
- nchw44param.push_back(conv_bias::TestArg{
- arg.param,
- TensorShape{
- arg.src.shape[0], arg.src.shape[1] / 4, arg.src[2],
- arg.src.shape[3], 4},
- TensorShape{
- arg.filter.shape[0] / 4, arg.filter.shape[1] / 4, kernel,
- kernel, 4, 4},
- TensorShape{}});
-
- auto used_im2col =
- algo_benchmark<ConvBias>(
- benchmark_im2col,
- {nchw44param[0].src, nchw44param[0].filter, {}, {}, {}},
- im2col_name) /
- RUN;
- printf("nchw44 shape src %s filter %s\n",
- nchw44param[0].src.to_string().c_str(),
- nchw44param[0].filter.to_string().c_str());
- printf("%s %s: normal: %f ms %f Gflops im2col: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used,
- computations / used, used_im2col, computations / used_im2col,
- used / used_im2col);
- }
- }
-
- std::vector<conv_bias::TestArg> get_nchw44_channel_wise_benchmark_args(
- std::vector<size_t> kernel, size_t stride, bool no_bias, bool no_nonlinemode,
- bool no_full_bias) {
- using namespace conv_bias;
- using Param = param::ConvBias;
- using NLMode = param::ConvBias::NonlineMode;
- std::vector<TestArg> args;
-
- auto pack = [&](size_t n, size_t group, size_t w, size_t h, size_t kernel,
- size_t stride, NLMode nlmode, bool pad) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- if (pad) {
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
- } else {
- param.pad_h = 0;
- param.pad_w = 0;
- }
- param.nonlineMode = nlmode;
- param.format = param::ConvBias::Format::NCHW44;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- args.emplace_back(
- param, TensorShape{n, group, h, w, 4},
- TensorShape{group, 1, 1, kernel, kernel, 4}, TensorShape{});
- if (!no_bias) {
- args.emplace_back(
- param, TensorShape{n, group, h, w, 4},
- TensorShape{group, 1, 1, kernel, kernel, 4},
- TensorShape{1, group, 1, 1, 4});
- }
- if (!no_full_bias) {
- args.emplace_back(
- param, TensorShape{n, group, h, w, 4},
- TensorShape{group, 1, 1, kernel, kernel, 4},
- TensorShape{
- n, group, (h + 2 * param.pad_w - kernel) / stride + 1,
- (w + 2 * param.pad_w - kernel) / stride + 1, 4});
- }
- };
-
- std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
- if (!no_nonlinemode) {
- nonlinemode.emplace_back(NLMode::RELU);
- nonlinemode.emplace_back(NLMode::H_SWISH);
- }
- for (size_t n : {1}) {
- for (auto nlmode : nonlinemode) {
- for (bool pad : {true}) {
- for (size_t group : {1, 2, 4, 128}) {
- for (size_t size : {40, 89, 100, 200}) {
- for (size_t kern : kernel) {
- pack(n, group, size, size, kern, stride, nlmode, pad);
- }
- }
- }
- }
- for (bool pad : {false}) {
- for (size_t group : {1, 2, 4, 8, 16, 32, 64, 128}) {
- for (size_t size : {40, 89, 100}) {
- for (size_t kern : kernel) {
- pack(n, group, size, size, kern, stride, nlmode, pad);
- }
- }
- }
- }
- }
- }
- return args;
- }
-
- void BENCHMARK_GROUPCONV_NCHW44_int8x8x16VS_int8x8x32(
- const char* algo_name0, const char* algo_name1, Handle* handle, size_t kernel,
- size_t stride = 1, size_t pack_size = 1) {
- auto args = get_nchw44_channel_wise_benchmark_args(
- {2, 3, 5}, stride, false, true, true);
-
- using namespace conv_bias;
- constexpr size_t RUN = 10;
- Benchmarker<ConvBias> benchmark(handle);
- benchmark.set_display(false);
- benchmark.set_times(RUN);
- benchmark.set_dtype(0, dtype::Int8());
- benchmark.set_dtype(1, dtype::Int8());
- benchmark.set_dtype(2, dtype::Int32());
- benchmark.set_dtype(4, dtype::Int32());
-
- Benchmarker<ConvBias> benchmark_algo1(handle);
- benchmark_algo1.set_display(false);
- benchmark_algo1.set_times(RUN);
- benchmark_algo1.set_dtype(0, dtype::Int8());
- benchmark_algo1.set_dtype(1, dtype::Int8());
- benchmark_algo1.set_dtype(2, dtype::Int16());
- benchmark_algo1.set_dtype(4, dtype::Int16());
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 * pack_size /
- (1024 * 1024 * 1024) * 1e3;
-
- benchmark.set_param(arg.param);
- auto used = algo_benchmark<ConvBias>(
- benchmark, {arg.src, arg.filter, {}, {}, {}}, algo_name0) /
- RUN;
-
- arg.param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- arg.param.format = param::ConvBias::Format::NCHW44;
- benchmark_algo1.set_param(arg.param);
-
- auto used_algo1 = algo_benchmark<ConvBias>(
- benchmark_algo1, {arg.src, arg.filter, {}, {}, {}},
- algo_name1) /
- RUN;
- printf("%s %s: normal: %f ms %f Gflops 8x8x16: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used,
- computations / used, used_algo1, computations / used_algo1,
- used / used_algo1);
- }
- }
-
- #if MEGDNN_AARCH64
- TEST_F(ARM_COMMON, BENCHMARK_NCHW_VS_NCHW44_INT8x8x32) {
- printf("=========================compare "
- "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16, "
- "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16 \n");
- BENCHMARK_IM2COL_NCHW44_VS_NCHW(
- "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16",
- "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16", handle(), 3, dtype::Int8(),
- dtype::Int32());
- }
- #endif
-
- TEST_F(ARM_COMMON, BENCHMARK_NCHW_VS_NCHW44_INT8x8x16) {
- #if MEGDNN_ARMV7
- const char* default_algo = "IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8";
- const char* mk4_algo = "IM2COLMATMUL:ARMV7_INT8X8X16_MK4_K8X8X4";
- printf("compare %s vs %s \n", default_algo, mk4_algo);
- BENCHMARK_IM2COL_NCHW44_VS_NCHW(
- default_algo, mk4_algo, handle(), 3, dtype::Int8(), dtype::Int16());
- #else
- const char* default_algo = "IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16";
- const char* mk4_algo = "IM2COLMATMUL:AARCH64_INT8X8X16_MK4_4X4X8";
- printf("compare %s vs %s \n", default_algo, mk4_algo);
- BENCHMARK_IM2COL_NCHW44_VS_NCHW(
- default_algo, mk4_algo, handle(), 3, dtype::Int8(), dtype::Int16());
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_GROUP_CONV_NCHW44_INT8x8x32_VS_INT8x8x16_STRIDE1) {
- BENCHMARK_GROUPCONV_NCHW44_int8x8x16VS_int8x8x32(
- "S8_CHAN_WISE_STRD1_NCHW44", "S8x8x16_CHAN_WISE_STRD1_STRD2_NCHW44",
- handle(), 3, 1, 4);
- }
- TEST_F(ARM_COMMON, BENCHMARK_GROUP_CONV_NCHW44_INT8x8x32_VS_INT8x8x16_STRIDE2) {
- BENCHMARK_GROUPCONV_NCHW44_int8x8x16VS_int8x8x32(
- "S8_CHAN_WISE_STRD2_NCHW44", "S8x8x16_CHAN_WISE_STRD1_STRD2_NCHW44",
- handle(), 3, 2, 4);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_GROUP_CONVBIAS_QUANTIZED) {
- constexpr size_t RUNS = 50;
- param::ConvBias param;
- param.sparse = param::ConvBias::Sparse::GROUP;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- Benchmarker<ConvBias> benchmarker_int(handle());
- benchmarker_int.set_times(RUNS)
- .set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(40.25f))
- .set_display(false);
- Benchmarker<ConvBias> benchmarker_float(handle());
- benchmarker_float.set_display(false).set_times(RUNS);
-
- auto run = [&](size_t N, size_t GROUP, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t STRD) {
- megdnn_assert(IC % GROUP == 0 && OC % GROUP == 0);
- TensorShape src({N, IC, H, W}), filter({GROUP, OC / GROUP, IC / GROUP, FS, FS}),
- bias({1, OC, 1, 1}), dst({N, OC, H / STRD, W / STRD});
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
- param.stride_h = STRD;
- param.stride_w = STRD;
- auto int_used =
- benchmarker_int.set_param(param).exec({src, filter, bias, {}, dst}) /
- RUNS;
- auto float_used =
- benchmarker_float.set_param(param).exec({src, filter, bias, {}, dst}) /
- RUNS;
- float computations = (IC / GROUP * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- printf("run: %s %s %s->%s \nfloat: %f ms %f Gflops int: %f ms "
- "%f Gflops speedup: %f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- bias.to_string().c_str(), dst.to_string().c_str(), float_used,
- computations / float_used, int_used, computations / int_used,
- float_used / int_used);
- };
-
- run(1, 1, 28, 28, 28, 28, 3, 1);
- run(1, 68, 68, 68, 14, 14, 3, 2);
- run(1, 96, 96, 96, 14, 14, 3, 2);
- run(1, 100, 100, 100, 7, 7, 3, 1);
- }
- #endif
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_MATMUL) {
- constexpr size_t RUNS = 10;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- Benchmarker<ConvBias> benchmarker(handle()), benchmarker_fused(handle());
- benchmarker.set_times(RUNS)
- .set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(40.25f))
- .set_display(false);
- benchmarker_fused.set_times(RUNS)
- .set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(40.25f))
- .set_display(false);
- benchmarker_fused.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>("S8MATMUL"));
-
- auto run = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS) {
- TensorShape src({N, IC, H, W}), filter({OC, IC, FS, FS}), bias({1, OC, 1, 1}),
- dst({N, OC, H, W});
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
- auto default_used =
- benchmarker.set_param(param).exec({src, filter, bias, {}, dst}) / RUNS;
- auto fused_used =
- benchmarker_fused.set_param(param).exec({src, filter, bias, {}, dst}) /
- RUNS;
- float computations = IC * (FS * FS + 1) * dst.total_nr_elems() * 2 * 1e-6;
- printf("run: %s %s %s->%s \ndefault: %f ms %f Gflops fused: %f ms "
- "%f Gflops speedup: %f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- bias.to_string().c_str(), dst.to_string().c_str(), default_used,
- computations / default_used, fused_used, computations / fused_used,
- default_used / fused_used);
- };
-
- run(1, 128, 128, 32, 32, 3);
-
- for (size_t IC : {36, 48}) {
- for (size_t OC : {36, 48, 64}) {
- for (size_t size : {56, 128, 256}) {
- for (size_t FS : {1, 3, 5}) {
- run(1, IC, OC, size, size, FS);
- }
- }
- }
- }
- }
- #endif
- #if MEGDNN_WITH_BENCHMARK
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_8X8X16_DIRECT_STRIDE1) {
- benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 2, 1, 4);
- benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 3, 1, 4);
- benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 5, 1, 4);
- benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 7, 1, 4);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_8X8X16_DIRECT_STRIDE2) {
- benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 2, 2, 4);
- benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 3, 2, 4);
- benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 5, 2, 4);
- benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 7, 2, 4);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F23) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32:1:2", handle(), 3);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32_:1:2", handle(), 3);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F23_4x4) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32_MK4_4x16:4:2", handle(), 3, 4);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32_MK4_4x8:4:2", handle(), 3, 4);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F63) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32K8X12X1:1:6", handle(), 3);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32:1:6", handle(), 3);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F63_4x4) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32_MK4_4x16:4:6", handle(), 3, 4);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32_MK4_4x8:4:6", handle(), 3, 4);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F54) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32K8X12X1:1:5", handle(), 4);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32:1:5", handle(), 4);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F45) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32K8X12X1:1:4", handle(), 5);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32:1:4", handle(), 5);
- #endif
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F23) {
- #if MEGDNN_AARCH64
- benchmark_winograd_fp16(
- "WINOGRAD:AARCH64_F32_MK4_4x16:4:2", "WINOGRAD:AARCH64_F16_K8X24X1:1:6",
- handle(), 3, 4);
- #else
- benchmark_winograd_fp16(
- "WINOGRAD:ARMV7_F32:1:2", "WINOGRAD:AARCH32_F16_K4X16X1:1:2", handle(), 3);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F45) {
- #if MEGDNN_AARCH64
- benchmark_winograd_fp16(
- "WINOGRAD:AARCH64_F32K8X12X1:1:4", "WINOGRAD:AARCH64_F16_K8X24X1:1:4",
- handle(), 5);
- #else
- benchmark_winograd_fp16(
- "WINOGRAD:ARMV7_F32:1:4", "WINOGRAD:AARCH32_F16_K4X16X1:1:4", handle(), 5);
- #endif
- }
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F63) {
- #if MEGDNN_AARCH64
- benchmark_winograd_fp16(
- "WINOGRAD:AARCH64_F32K8X12X1:1:6", "WINOGRAD:AARCH64_F16_K8X24X1:1:6",
- handle(), 3);
- #else
- benchmark_winograd_fp16(
- "WINOGRAD:ARMV7_F32:1:6", "WINOGRAD:AARCH32_F16_K4X16X1:1:6", handle(), 3);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F23_8x8) {
- #if MEGDNN_AARCH64
- benchmark_winograd_fp16(
- "WINOGRAD:AARCH64_F32_MK4_4x16:4:2", "WINOGRAD:AARCH64_F16_MK8_8X8:8:2",
- handle(), 3, 8);
- #else
- benchmark_winograd_fp16(
- "WINOGRAD:ARMV7_F32_MK4_4x8:4:2", "WINOGRAD:AARCH32_F16_MK8_4X8:8:2",
- handle(), 3, 8);
- #endif
- }
- #endif
-
- void benchmark_winograd_nchw_vs_nchw44(
- const char* algo_name0, const char* algo_name1, Handle* handle) {
- using namespace conv_bias;
- using NLMode = param::ConvBias::NonlineMode;
- std::vector<conv_bias::TestArg> args_nchw44;
- std::vector<conv_bias::TestArg> args_nchw;
-
- auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w, size_t group,
- NLMode nlmode) {
- param::ConvBias param;
- param.format = param::ConvBias::Format::NCHW44;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = 1;
- param.pad_w = 1;
- param.nonlineMode = nlmode;
-
- if (group == 1) {
- param.sparse = param::ConvBias::Sparse::DENSE;
- args_nchw44.emplace_back(
- param, TensorShape{n, ic / 4, h, w, 4},
- TensorShape{oc / 4, ic / 4, 3, 3, 4, 4}, TensorShape{});
- param.format = param::ConvBias::Format::NCHW;
- args_nchw.emplace_back(
- param, TensorShape{n, ic, h, w}, TensorShape{oc, ic, 3, 3},
- TensorShape{});
- } else {
- auto oc_per_group = oc / group;
- auto ic_per_group = ic / group;
- param.sparse = param::ConvBias::Sparse::GROUP;
- args_nchw44.emplace_back(
- param, TensorShape{n, ic_per_group / 4, h, w, 4},
- TensorShape{group, oc_per_group / 4, ic_per_group / 4, 3, 3, 4, 4},
- TensorShape{});
- param.format = param::ConvBias::Format::NCHW;
- args_nchw.emplace_back(
- param, TensorShape{n, ic, h, w},
- TensorShape{group, oc_per_group, ic_per_group, 3, 3},
- TensorShape{});
- }
- };
-
- std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
- for (auto nlmode : nonlinemode)
- for (size_t n : {1})
- for (size_t group = 1; group <= 1; ++group) {
- pack(n, 512, 512, 15, 15, group, nlmode);
- pack(n, 512, 256, 15, 15, group, nlmode);
- pack(n, 256, 256, 29, 29, group, nlmode);
- pack(n, 256, 128, 29, 29, group, nlmode);
- pack(n, 128, 128, 57, 57, group, nlmode);
- pack(n, 128, 64, 57, 57, group, nlmode);
- pack(n, 24, 24, 224, 224, group, nlmode);
- pack(n, 64, 24, 123, 123, group, nlmode);
- pack(n, 64, 64, 56, 56, group, nlmode);
- pack(n, 128, 128, 28, 28, group, nlmode);
- pack(n, 256, 256, 14, 14, group, nlmode);
- pack(n, 512, 512, 7, 7, group, nlmode);
- }
-
- using namespace conv_bias;
- constexpr size_t RUN = 10;
- Benchmarker<ConvBias> benchmark_winograd_nchw(handle);
- benchmark_winograd_nchw.set_display(false);
- benchmark_winograd_nchw.set_times(RUN);
-
- Benchmarker<ConvBias> benchmark_winograd_nchw44(handle);
- benchmark_winograd_nchw44.set_display(false);
- benchmark_winograd_nchw44.set_times(RUN);
-
- std::string winograd_nchw_algo_name = ssprintf("WINOGRAD:%s", algo_name0);
- std::string winograd_nchw44_algo_name = ssprintf("WINOGRAD_NCHW44:%s", algo_name1);
-
- for (size_t i = 0; i < args_nchw.size(); ++i) {
- auto arg_nchw = args_nchw[i];
- auto arg_nchw44 = args_nchw44[i];
-
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg_nchw.param;
- opr->deduce_layout(
- {arg_nchw.src, dtype::Float32()}, {arg_nchw.filter, dtype::Float32()},
- {arg_nchw.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg_nchw.filter[1] *
- arg_nchw.filter[2] * arg_nchw.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- benchmark_winograd_nchw.set_param(arg_nchw.param);
- auto nchw_used = algo_benchmark<ConvBias>(
- benchmark_winograd_nchw,
- {arg_nchw.src, arg_nchw.filter, {}, {}, {}},
- winograd_nchw_algo_name.c_str()) /
- RUN;
-
- benchmark_winograd_nchw44.set_param(arg_nchw44.param);
- auto nchw44_used = algo_benchmark<ConvBias>(
- benchmark_winograd_nchw44,
- {arg_nchw44.src, arg_nchw44.filter, {}, {}, {}},
- winograd_nchw44_algo_name.c_str()) /
- RUN;
-
- printf("%s %s: nchw: %f ms %f Gflops nchw44: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg_nchw.src.to_string().c_str(), arg_nchw.filter.to_string().c_str(),
- nchw_used, computations / nchw_used, nchw44_used,
- computations / nchw44_used, nchw_used / nchw44_used);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F23_MK4_NCHW_VS_NCHW44) {
- #if MEGDNN_AARCH64
- benchmark_winograd_nchw_vs_nchw44(
- "AARCH64_F32_MK4_4x16:4:2", "AARCH64_F32_MK4_4x16:4:2", handle());
- #else
- benchmark_winograd_nchw_vs_nchw44(
- "ARMV7_F32_MK4_4x8:4:2", "ARMV7_F32_MK4_4x8:4:2", handle());
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F63_MK4_NCHW_VS_NCHW44) {
- #if MEGDNN_AARCH64
- benchmark_winograd_nchw_vs_nchw44(
- "AARCH64_F32_MK4_4x16:4:6", "AARCH64_F32_MK4_4x16:4:6", handle());
- #else
- benchmark_winograd_nchw_vs_nchw44(
- "ARMV7_F32_MK4_4x8:4:6", "ARMV7_F32_MK4_4x8:4:6", handle());
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F73_MK4_NCHW_VS_NCHW44) {
- #if MEGDNN_AARCH64
- benchmark_winograd_nchw_vs_nchw44(
- "AARCH64_F32_MK4_4x16:4:6", "ARM_COMMON_F32_GEMV_MK4:4:7", handle());
- #else
- benchmark_winograd_nchw_vs_nchw44(
- "ARMV7_F32_MK4_4x8:4:6", "ARMV7_F32_MK4_4x8:4:7", handle());
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F23_8x8) {
- auto benchmark_winograd_quantized = [](const char* algo_name_fp32,
- const char* algo_name_quantized,
- Handle* handle, size_t kernel) {
- auto&& args = get_winograd_benchmark_args(kernel);
- using namespace conv_bias;
- constexpr size_t RUN = 10;
- Benchmarker<ConvBias> benchmark(handle);
- benchmark.set_display(false);
- benchmark.set_times(RUN);
-
- Benchmarker<ConvBias> benchmark_winograd(handle);
- benchmark_winograd.set_display(false).set_times(RUN);
- benchmark_winograd.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- benchmark.set_param(arg.param);
- auto used = algo_benchmark<ConvBias>(
- benchmark, {arg.src, arg.filter, {}, {}, {}},
- algo_name_fp32) /
- RUN;
-
- benchmark_winograd.set_param(arg.param);
- auto used_winograd =
- algo_benchmark<ConvBias>(
- benchmark_winograd, {arg.src, arg.filter, {}, {}, {}},
- algo_name_quantized) /
- RUN;
-
- printf("%s %s: normal: %f ms %f Gflops winograd: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used,
- computations / used, used_winograd, computations / used_winograd,
- used / used_winograd);
- }
- };
-
- #if MEGDNN_AARCH64
- benchmark_winograd_quantized(
- "WINOGRAD:AARCH64_F32_MK4_4x16:4:2",
- "WINOGRAD:AARCH64_INT16X16X32_MK8_8X8:8:2", handle(), 3);
- #else
- benchmark_winograd_quantized(
- "WINOGRAD:ARMV7_F32_MK4_4x8:4:2", "WINOGRAD:ARMV7_INT16X16X32_MK8_4X8:8:2",
- handle(), 3);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE1) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(
- param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("S8STRD1"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0,
- computations / used0, used1, computations / used1, used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE2) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(
- param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("S8STRD2"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0,
- computations / used0, used1, computations / used1, used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE1) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(
- param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("QU8STRD1"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0,
- computations / used0, used1, computations / used1, used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE2) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(
- param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("QU8STRD2"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0,
- computations / used0, used1, computations / used1, used1 / used0);
- }
- }
- TEST_F(ARM_COMMON, BENCHMARK_CHANNEL_WISE_F32_STRIDE1_NCHW44) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = 1;
- param.pad_w = 1;
- param.nonlineMode = NonlineMode::RELU;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_display(false);
- benchmark0.set_param(param);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("F32STRD1"));
-
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = param;
-
- param.format = param::ConvBias::Format::NCHW44;
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_display(false);
- benchmark1.set_param(param);
- benchmark1.set_times(RUN);
- benchmark1.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("F32_CHANNEL_WISE_NCHW44"));
- auto run = [&](size_t group, size_t w, size_t h, size_t kernel) {
- TensorLayout dst_layout;
- opr->deduce_layout(
- {{1, group * 4, h, w}, dtype::Int8()},
- {{group * 4, 1, 1, kernel, kernel}, dtype::Int8()},
- {{1, group * 4, 1, 1}, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * kernel * kernel * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.exec(
- {{1, group * 4, h, w},
- {group * 4, 1, 1, kernel, kernel},
- {1, group * 4, 1, 1},
- {},
- {}}) /
- RUN;
- auto used1 = benchmark1.exec(
- {{1, group, h, w, 4},
- {group, 1, 1, kernel, kernel, 4},
- {1, group, 1, 1, 4},
- {},
- {}}) /
- RUN;
- printf("group/h/w/kernel:%zu,%zu,%zu,%zu: nchw: %f ms %f Gflops "
- "nchw44: "
- "%f ms %f GFlops "
- "speedup: %f\n",
- group, h, w, kernel, used0, computations / used0, used1,
- computations / used1, used0 / used1);
- };
- for (size_t group : {8, 16, 32, 64}) {
- for (size_t kerenl : {2, 3, 5}) {
- run(group, 112, 112, kerenl);
- run(group, 56, 56, kerenl);
- run(group, 48, 48, kerenl);
- run(group, 28, 28, kerenl);
- run(group, 14, 14, kerenl);
- }
- }
- run(8, 112, 112, 3);
- run(32, 56, 56, 3);
- run(64, 28, 28, 3);
- run(128, 14, 14, 3);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CHANNEL_WISE_F32_STRIDE2_NCHW44) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = 1;
- param.pad_w = 1;
- param.nonlineMode = NonlineMode::RELU;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_display(false);
- benchmark0.set_param(param);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("F32STRD2"));
-
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = param;
-
- param.format = param::ConvBias::Format::NCHW44;
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_display(false);
- benchmark1.set_param(param);
- benchmark1.set_times(RUN);
- benchmark1.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("F32_CHANNEL_WISE_NCHW44"));
- auto run = [&](size_t group, size_t w, size_t h, size_t kernel) {
- TensorLayout dst_layout;
- opr->deduce_layout(
- {{1, group * 4, h, w}, dtype::Int8()},
- {{group * 4, 1, 1, kernel, kernel}, dtype::Int8()},
- {{1, group * 4, 1, 1}, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * kernel * kernel * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.exec(
- {{1, group * 4, h, w},
- {group * 4, 1, 1, kernel, kernel},
- {1, group * 4, 1, 1},
- {},
- {}}) /
- RUN;
- auto used1 = benchmark1.exec(
- {{1, group, h, w, 4},
- {group, 1, 1, kernel, kernel, 4},
- {1, group, 1, 1, 4},
- {},
- {}}) /
- RUN;
- printf("group/h/w/kernel:%zu,%zu,%zu,%zu: nchw: %f ms %f Gflops "
- "nchw44: "
- "%f ms %f GFlops "
- "speedup: %f\n",
- group, h, w, kernel, used0, computations / used0, used1,
- computations / used1, used0 / used1);
- };
- for (size_t group : {8, 16, 32, 64}) {
- for (size_t kerenl : {2, 3, 5}) {
- run(group, 112, 112, kerenl);
- run(group, 56, 56, kerenl);
- run(group, 48, 48, kerenl);
- run(group, 28, 28, kerenl);
- run(group, 14, 14, kerenl);
- }
- }
- run(8, 112, 112, 3);
- run(32, 56, 56, 3);
- run(64, 28, 28, 3);
- run(128, 14, 14, 3);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QINT8_STRIDE1_NCHW44) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = 1;
- param.pad_w = 1;
- param.nonlineMode = NonlineMode::RELU;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::QuantizedS8(0.2f))
- .set_dtype(1, dtype::QuantizedS8(0.2f))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::QuantizedS8(1.4f));
- benchmark0.set_display(false);
- benchmark0.set_param(param);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("S8STRD1"));
-
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = param;
-
- param.format = param::ConvBias::Format::NCHW44;
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::QuantizedS8(0.2f))
- .set_dtype(1, dtype::QuantizedS8(0.2f))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::QuantizedS8(1.4f));
- benchmark1.set_display(false);
- benchmark1.set_param(param);
- benchmark1.set_times(RUN);
- benchmark1.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "S8_CHAN_WISE_STRD1_NCHW44"));
- auto run = [&](size_t group, size_t w, size_t h, size_t kernel) {
- TensorLayout dst_layout;
- opr->deduce_layout(
- {{1, group * 4, h, w}, dtype::Int8()},
- {{group * 4, 1, 1, kernel, kernel}, dtype::Int8()},
- {{1, group * 4, 1, 1}, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * kernel * kernel * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.exec(
- {{1, group * 4, h, w},
- {group * 4, 1, 1, kernel, kernel},
- {1, group * 4, 1, 1},
- {},
- {}}) /
- RUN;
- auto used1 = benchmark1.exec(
- {{1, group, h, w, 4},
- {group, 1, 1, kernel, kernel, 4},
- {1, group, 1, 1, 4},
- {},
- {}}) /
- RUN;
- printf("group/h/w/kernel:%zu,%zu,%zu,%zu: nchw: %f ms %f Gflops "
- "nchw44: "
- "%f ms %f GFlops "
- "speedup: %f\n",
- group, h, w, kernel, used0, computations / used0, used1,
- computations / used1, used0 / used1);
- };
- for (size_t group : {8, 16, 32, 64, 128}) {
- for (size_t kerenl : {2, 3, 5}) {
- run(group, 112, 112, kerenl);
- run(group, 56, 56, kerenl);
- run(group, 48, 48, kerenl);
- run(group, 28, 28, kerenl);
- run(group, 14, 14, kerenl);
- }
- }
- }
-
- #endif
-
- #if MGB_ENBALE_DOT
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE1_WITHDOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(
- param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("ARMDOTS8STRD1"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0,
- computations / used0, used1, computations / used1, used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE2_WITHDOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(
- param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("ARMDOTS8STRD2"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0,
- computations / used0, used1, computations / used1, used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(
- param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- // clang-format off
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- // clang-format on
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("ARMDOTU8STRD1"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0,
- computations / used0, used1, computations / used1, used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(
- param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- // clang-format off
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- // clang-format on
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("ARMDOTU8STRD2"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0,
- computations / used0, used1, computations / used1, used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_NCHW44_DOT) {
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- size_t stride, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
- param.format = param::ConvBias::Format::NCHW44_DOT;
-
- //! channel bias
- args.emplace_back(
- param, TensorShape{1, ic / 4, h, w, 4},
- TensorShape{oc / 4, ic / 4, kernel, kernel, 4, 4},
- TensorShape{1, oc / 4, 1, 1, 4});
- };
- for (size_t stride : {1, 2})
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t oc : {64})
- for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) {
- run(oc, oc, 56, 56, kernel, kernel / 2, stride, nonline_mode);
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("ARMDOTS8DIRECT_NCHW44"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 8.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: Direct use: %f ms %f Gflops normal: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0,
- computations / used0, used1, computations / used1, used1 / used0);
- }
- }
-
- #endif
- #endif
-
- /*====================== BENCHMARK CONV1X1 ===========================*/
- #if MEGDNN_WITH_BENCHMARK
-
- namespace {
- std::vector<conv_bias::TestArg> get_conv_bias_1x1_benchmark_args(size_t pack_size = 1) {
- using namespace conv_bias;
- std::vector<TestArg> args;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = 0;
- param.pad_w = 0;
- param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- auto bench_case = [&](size_t OC, size_t IC, size_t H, size_t W) {
- if (pack_size == 1)
- args.emplace_back(
- param, TensorShape{1, IC, H, W}, TensorShape{OC, IC, 1, 1},
- TensorShape{});
- else {
- if (pack_size == 4)
- param.format = param::ConvBias::Format::NCHW44;
- args.emplace_back(
- param, TensorShape{1, IC / pack_size, H, W, pack_size},
- TensorShape{
- OC / pack_size, IC / pack_size, 1, 1, pack_size, pack_size},
- TensorShape{});
- }
- };
-
- //! MobileNetV1
- bench_case(64, 32, 112, 112);
- bench_case(128, 64, 56, 56);
- bench_case(128, 128, 56, 56);
- bench_case(256, 128, 28, 28);
- bench_case(256, 256, 28, 28);
- bench_case(512, 256, 14, 14);
- bench_case(512, 512, 14, 14);
- bench_case(1024, 512, 7, 7);
- bench_case(1024, 1024, 7, 7);
-
- //! MobileNetV2
- bench_case(16, 32, 112, 112);
- bench_case(96, 16, 112, 112);
- bench_case(144, 24, 56, 56);
- bench_case(192, 32, 28, 28);
- bench_case(384, 64, 28, 28);
- bench_case(576, 96, 14, 14);
- bench_case(960, 160, 7, 7);
- bench_case(320, 960, 7, 7);
- bench_case(1280, 320, 7, 7);
-
- //! MobileNetV3-Large
- bench_case(64, 16, 112, 112);
- bench_case(72, 24, 56, 56);
- bench_case(120, 40, 28, 28);
- bench_case(240, 40, 28, 28);
- bench_case(200, 80, 14, 14);
- bench_case(184, 80, 14, 14);
- bench_case(480, 80, 14, 14);
- bench_case(672, 112, 14, 14);
-
- //! MobileNetV3-Small
- bench_case(72, 16, 56, 56);
- bench_case(88, 24, 28, 28);
- bench_case(96, 24, 28, 28);
- bench_case(240, 40, 14, 14);
- bench_case(120, 40, 14, 14);
- bench_case(144, 48, 14, 14);
- bench_case(288, 48, 14, 14);
- bench_case(576, 96, 7, 7);
-
- //! resnet50
- bench_case(256, 64, 56, 56);
- bench_case(512, 128, 28, 28);
- bench_case(1024, 256, 14, 14);
- bench_case(2048, 512, 7, 7);
-
- return args;
- }
-
- void benchmark_conv1x1(
- const char* matmul_algo_name, Handle* handle, DType stype, DType matmul_dtype,
- DType bias_type, DType conv_dtype, bool is_mk4 = false) {
- using namespace conv_bias;
- int pack_size = is_mk4 ? 4 : 1;
- std::vector<TestArg> conv_bias_1x1_args =
- get_conv_bias_1x1_benchmark_args(pack_size);
-
- constexpr size_t RUNS = 50;
-
- param::MatrixMul param;
- param.transposeA = false;
- param.transposeB = false;
- if (is_mk4) {
- param.format = MatrixMul::Param::Format::MK4;
- }
- Benchmarker<MatrixMul> benchmark_matmul(handle);
- benchmark_matmul.set_before_exec_callback(AlgoChecker<MatrixMul>(matmul_algo_name));
- benchmark_matmul.set_times(RUNS)
- .set_dtype(0, stype)
- .set_dtype(1, stype)
- .set_dtype(2, matmul_dtype)
- .set_param(param)
- .set_display(false);
-
- std::string conv1x1_algo_name = ssprintf("CONV1x1:%s:24", matmul_algo_name);
- Benchmarker<ConvBias> benchmark_conv1x1(handle);
- benchmark_conv1x1.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(conv1x1_algo_name.c_str()));
- benchmark_conv1x1.set_times(RUNS)
- .set_dtype(0, stype)
- .set_dtype(1, stype)
- .set_dtype(2, bias_type)
- .set_dtype(4, conv_dtype)
- .set_display(false);
-
- for (auto&& arg : conv_bias_1x1_args) {
- size_t IC = arg.src[1];
- size_t OH = arg.src[2];
- size_t OW = arg.src[3];
- size_t OC = arg.filter[0];
- size_t M = OC * pack_size;
- size_t K = IC * pack_size;
- size_t N = OH * OW;
-
- float computations = M * N * K * 2.f / (1024 * 1024 * 1024) * 1e3;
-
- TensorShape A, B;
- A = TensorShape{M, K};
- B = TensorShape{K, N};
- if (is_mk4) {
- A = TensorShape{M / 4, K / 4, 4, 4};
- B = TensorShape{K / 4, N, 4};
- }
-
- auto conv1x1_used = benchmark_conv1x1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUNS;
- auto matmul_used = benchmark_matmul.exec({A, B, {}}) / RUNS;
-
- printf("%s %s:\n matmul: %f ms %f Gflops\nconv1x1: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), matmul_used,
- computations / matmul_used, conv1x1_used, computations / conv1x1_used,
- matmul_used / conv1x1_used);
- }
- }
- } // namespace
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_F32) {
- #if MEGDNN_AARCH64
- benchmark_conv1x1(
- "AARCH64_F32K8X12X1", handle(), dtype::Float32{}, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{});
- #else
- benchmark_conv1x1(
- "ARMV7_F32", handle(), dtype::Float32{}, dtype::Float32{}, dtype::Float32{},
- dtype::Float32{});
- #endif
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_F16) {
- #if MEGDNN_AARCH64
- benchmark_conv1x1(
- "AARCH64_F16_K8X24X1", handle(), dtype::Float16{}, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{});
- #else
- benchmark_conv1x1(
- "AARCH32_F16_K4X16X1", handle(), dtype::Float16{}, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{});
- #endif
- }
- #endif
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_QUANTIZEDSYM) {
- dtype::QuantizedS8 stype(2.5f);
- dtype::QuantizedS32 dtype(6.25f);
- #if MEGDNN_AARCH64
- #if MGB_ENBALE_DOT
- benchmark_conv1x1(
- "AARCH64_INT8X8X32_K8X12X4_DOTPROD", handle(), stype, dtype, dtype, dtype);
- #else
- benchmark_conv1x1("AARCH64_INT8X8X32_K8X8X8", handle(), stype, dtype, dtype, dtype);
- benchmark_conv1x1(
- "AARCH64_INT8X8X32_K4X4X16", handle(), stype, dtype, dtype, dtype);
- #endif
- #elif MEGDNN_ARMV7
- benchmark_conv1x1("ARMV7_INT8X8X32_K4X8X8", handle(), stype, dtype, dtype, dtype);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_QUANTIZEDASYM) {
- dtype::Quantized8Asymm stype(1.2f, (uint8_t)125);
- dtype::QuantizedS32 dtype(1.2 * 1.2);
-
- #if MEGDNN_AARCH64
- #if MGB_ENBALE_DOT
- benchmark_conv1x1(
- "AARCH64_QUINT8_K8X8X4_DOTPROD", handle(), stype, dtype, dtype, dtype);
- #else
- benchmark_conv1x1("AARCH64_QUINT8_K8X8X8", handle(), stype, dtype, dtype, dtype);
- #endif
- #elif MEGDNN_ARMV7
- benchmark_conv1x1("ARMV7_QUINT8_K4X8X8", handle(), stype, dtype, dtype, dtype);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_INT8x8x16) {
- #if MEGDNN_AARCH64
- benchmark_conv1x1(
- "AARCH64_INT8X8X16_K8X8X8", handle(), dtype::Int8{}, dtype::Int16{},
- dtype::Int16{}, dtype::Int16{});
- benchmark_conv1x1(
- "AARCH64_INT8X8X16_K4X4X16", handle(), dtype::Int8{}, dtype::Int16{},
- dtype::Int16{}, dtype::Int16{});
- #elif MEGDNN_ARMV7
- benchmark_conv1x1(
- "ARMV7_INT8X8X16_K4X8X8", handle(), dtype::Int8{}, dtype::Int16{},
- dtype::Int16{}, dtype::Int16{});
- benchmark_conv1x1(
- "ARMV7_INT8X8X16_K4X2X16", handle(), dtype::Int8{}, dtype::Int16{},
- dtype::Int16{}, dtype::Int16{});
- benchmark_conv1x1(
- "ARMV7_INT8X8X16_MK4_K8X8X4", handle(), dtype::Int8{}, dtype::Int16{},
- dtype::Int16{}, dtype::Int16{}, true);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_GEMV_FP32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args;
- param::ConvBias conv_param;
- conv_param.stride_h = 1;
- conv_param.stride_w = 1;
- conv_param.pad_h = 0;
- conv_param.pad_w = 0;
- conv_param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- auto run = [&](size_t M, size_t K) {
- args.emplace_back(
- conv_param, TensorShape{1, K, 1, 1}, TensorShape{M, K, 1, 1},
- TensorShape{});
- };
- for (size_t M : {4, 64, 1024, 4096})
- for (size_t K : {128, 256, 1024, 4096})
- run(M, K);
-
- constexpr size_t RUNS = 50;
- param::MatrixMul param;
- param.transposeA = false;
- param.transposeB = false;
- Benchmarker<MatrixMul> benchmark_matmul(handle());
- benchmark_matmul.set_before_exec_callback(
- AlgoChecker<MatrixMul>("ARM_COMMON_F32_GEMV"));
- benchmark_matmul.set_times(RUNS)
- .set_dtype(0, dtype::Float32{})
- .set_dtype(1, dtype::Float32{})
- .set_dtype(2, dtype::Float32{})
- .set_param(param)
- .set_display(false);
-
- Benchmarker<ConvBias> benchmark_conv1x1(handle());
- benchmark_conv1x1.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>("CONV1x1_GEMV"));
- benchmark_conv1x1.set_times(RUNS)
- .set_dtype(0, dtype::Float32{})
- .set_dtype(1, dtype::Float32{})
- .set_dtype(2, dtype::Float32{})
- .set_dtype(4, dtype::Float32{})
- .set_display(false);
-
- std::cout << "warm up:\n";
- for (int i = 0; i < 50; i++) {
- benchmark_matmul.exec({{1, 1024}, {1024, 512}, {}});
- benchmark_matmul.set_display(true);
- }
-
- for (auto&& arg : args) {
- size_t IC = arg.src[1];
- size_t OH = arg.src[2];
- size_t OW = arg.src[3];
- size_t OC = arg.filter[0];
- size_t M = OC;
- size_t K = IC;
- size_t N = OH * OW;
-
- float computations = M * N * K * 2.f / (1024 * 1024 * 1024) * 1e3;
-
- TensorShape A, B;
- A = TensorShape{M, K};
- B = TensorShape{K, N};
-
- auto conv1x1_used = benchmark_conv1x1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUNS;
- auto matmul_used = benchmark_matmul.exec({A, B, {}}) / RUNS;
-
- printf("%s %s:\n gemv: %f ms %f Gflops\nconv1x1: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), matmul_used,
- computations / matmul_used, conv1x1_used, computations / conv1x1_used,
- matmul_used / conv1x1_used);
- }
- }
-
- //! enable none dot algo now
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_1X1_S1_NCHW_VS_NCHW44_INT8x8x32) {
- std::vector<TestArg> conv_bias_1x1_args_nchw44 =
- get_conv_bias_1x1_benchmark_args(4);
- std::vector<TestArg> conv_bias_1x1_args_nchw = get_conv_bias_1x1_benchmark_args(1);
- constexpr size_t RUNS = 50;
-
- Benchmarker<ConvBias> benchmark_conv1x1_nchw44(handle());
- benchmark_conv1x1_nchw44.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- "CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24"));
- benchmark_conv1x1_nchw44.set_times(RUNS)
- .set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_display(false);
-
- Benchmarker<ConvBias> benchmark_conv1x1_nchw(handle());
- benchmark_conv1x1_nchw.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- "CONV1x1:AARCH64_INT8X8X32_K4X4X16:24"));
- benchmark_conv1x1_nchw.set_times(RUNS)
- .set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_display(false);
-
- for (size_t i = 0; i < conv_bias_1x1_args_nchw44.size(); ++i) {
- auto&& arg_nchw = conv_bias_1x1_args_nchw[i];
- auto&& arg_nchw44 = conv_bias_1x1_args_nchw44[i];
-
- size_t IC = arg_nchw.src[1];
- size_t OH = arg_nchw.src[2];
- size_t OW = arg_nchw.src[3];
- size_t OC = arg_nchw.filter[0];
- size_t M = OC;
- size_t K = IC;
- size_t N = OH * OW;
-
- float computations = M * N * K * 2.f / (1024 * 1024 * 1024) * 1e3;
-
- auto conv1x1_nchw =
- benchmark_conv1x1_nchw.set_param(arg_nchw.param)
- .exec({arg_nchw.src, arg_nchw.filter, arg_nchw.bias, {}, {}}) /
- RUNS;
- auto conv1x1_nchw44 = benchmark_conv1x1_nchw44.set_param(arg_nchw44.param)
- .exec({arg_nchw44.src,
- arg_nchw44.filter,
- arg_nchw44.bias,
- {},
- {}}) /
- RUNS;
- printf("%s %s:\n conv_1x1_nchw: %f ms %f Gflops\nconv1x1_nchw44: %f ms "
- "%f GFlops "
- "speedup: "
- "%f\n",
- arg_nchw.src.to_string().c_str(), arg_nchw.filter.to_string().c_str(),
- conv1x1_nchw, computations / conv1x1_nchw, conv1x1_nchw44,
- computations / conv1x1_nchw44, conv1x1_nchw / conv1x1_nchw44);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_WINOGRAD_VS_IM2COL_INT8) {
- auto&& args = get_winograd_benchmark_args(3, 8);
- using namespace conv_bias;
- constexpr size_t RUN = 10;
-
- Benchmarker<ConvBias> benchmark_im2col(handle());
- benchmark_im2col.set_display(false);
- benchmark_im2col.set_times(RUN);
- benchmark_im2col.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
-
- Benchmarker<ConvBias> benchmark_winograd(handle());
- benchmark_winograd.set_display(false);
- benchmark_winograd.set_times(RUN);
- benchmark_winograd.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- benchmark_im2col.set_param(arg.param);
- auto im2col_used = algo_benchmark<ConvBias>(
- benchmark_im2col, {arg.src, arg.filter, {}, {}, {}},
- "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16") /
- RUN;
-
- benchmark_winograd.set_param(arg.param);
- auto winograd_used =
- algo_benchmark<ConvBias>(
- benchmark_winograd, {arg.src, arg.filter, {}, {}, {}},
- "WINOGRAD:AARCH64_INT16X16X32_MK8_8X8:8:2") /
- RUN;
-
- printf("%s %s: im2col: %f ms %f Gflops winograd: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), im2col_used,
- computations / im2col_used, winograd_used, computations / winograd_used,
- im2col_used / winograd_used);
- }
- }
-
- #endif
-
- // vim: syntax=cpp.doxygen
|