|
- /**
- * \file dnn/test/arm_common/conv_bias_multi_thread_benchmark.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "test/arm_common/fixture.h"
- #include "test/common/benchmarker.h"
- #include "test/common/conv_bias.h"
-
- using namespace megdnn;
- using namespace test;
- using namespace conv_bias;
- #if MEGDNN_WITH_BENCHMARK
- namespace {
- void benchmark_impl(
- const param::ConvBias param,
- std::vector<std::pair<SmallVector<TensorShape>, float>>& shapes_and_computation,
- const std::string algo_name, size_t RUNS,
- TaskExecutorConfig&& multi_thread_config,
- TaskExecutorConfig&& single_thread_config, std::vector<DType>& data_type) {
- std::vector<float> multi_thread_times, single_thread_times;
- {
- auto multi_thread_hanle = create_cpu_handle(0, true, &multi_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(multi_thread_hanle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_param(param)
- .set_dtype(0, data_type[0])
- .set_dtype(1, data_type[1])
- .set_dtype(2, data_type[2])
- .set_dtype(4, data_type[3])
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name.c_str()));
- for (auto shape : shapes_and_computation) {
- multi_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- {
- auto single_thread_handle = create_cpu_handle(0, true, &single_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(single_thread_handle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_param(param)
- .set_dtype(0, data_type[0])
- .set_dtype(1, data_type[1])
- .set_dtype(2, data_type[2])
- .set_dtype(4, data_type[3])
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name.c_str()));
- for (auto shape : shapes_and_computation) {
- single_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
- printf("core_ids:");
- for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
- printf("%zu ", multi_thread_config.affinity_core_set[i]);
- }
- printf(", Single thread core_id %zu\n", single_thread_config.affinity_core_set[0]);
- for (size_t i = 0; i < shapes_and_computation.size(); i++) {
- auto shapes = shapes_and_computation[i];
- printf("Bench case: ");
- for (auto&& shape : shapes.first) {
- printf("%s ", shape.to_string().c_str());
- }
- float computations = shapes.second;
- printf("%zu threads gflops: %f,\n single thread gflops: "
- "%f. spead up = %f, speedup/cores=%f\n",
- multi_thread_config.nr_thread, computations / multi_thread_times[i],
- computations / single_thread_times[i],
- single_thread_times[i] / multi_thread_times[i],
- single_thread_times[i] / multi_thread_times[i] /
- multi_thread_config.nr_thread);
- }
- }
- } // namespace
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "F32DIRECT";
- printf("Benchmark F32DIRECT_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32()};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "F32DIRECT";
- printf("Benchmark F32DIRECT_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF32_STR1) {
- constexpr size_t RUNS = 50;
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "F32STRD1";
- printf("Benchmark F32STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32()};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "F32STRD1";
- printf("Benchmark F32STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF32_STR2) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 2);
-
- std::string algo_name = "F32STRD2";
- printf("Benchmark F32STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32()};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "F32STRD2";
- printf("Benchmark F32STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 2);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF16) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "F16DIRECT";
- printf("Benchmark F16DIRECT_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::Float16(), dtype::Float16(), dtype::Float16(), dtype::Float16()};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "F16DIRECT";
- printf("Benchmark F16DIRECT_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF16_STR1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "F16STRD1";
- printf("Benchmark F16STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::Float16(), dtype::Float16(), dtype::Float16(), dtype::Float16()};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "F16STRD1";
- printf("Benchmark F16STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CHANNEL_WISE_FP16_NCHW88) {
- constexpr size_t RUNS = 50;
-
- std::string algo_name = "F16_CHANNEL_WISE_NCHW88";
- printf("Benchmarker F16_CHANNEL_WISE_NCHW88 algo\n");
- std::vector<DType> data_type = {
- dtype::Float16(), dtype::Float16(), dtype::Float16(), dtype::Float16()};
-
- auto bench_case = [&](size_t N, size_t IC, size_t H, size_t W, size_t FS, size_t P,
- size_t S) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = P;
- param.pad_w = P;
- param.stride_h = S;
- param.stride_w = S;
- param.sparse = param::ConvBias::Sparse::GROUP;
- param.format = param::ConvBias::Format::NCHW88;
-
- size_t group = IC;
- size_t OC = IC;
- SmallVector<TensorShape> shapes{
- {N, IC, H, W, 8},
- {group, 1, 1, FS, FS, 8},
- {1, OC, 1, 1, 8},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1, 8}};
- TensorShape dst{N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1, 8};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = {
- std::make_pair(shapes, computations)};
-
- benchmark_impl(
- param, shape_arg, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- };
-
- bench_case(1, 64, 100, 100, 5, 2, 1);
- bench_case(1, 64, 56, 56, 5, 2, 1);
- bench_case(1, 64, 28, 28, 5, 2, 1);
- bench_case(1, 64, 100, 100, 5, 2, 2);
- bench_case(1, 64, 56, 56, 5, 2, 2);
- bench_case(1, 64, 28, 28, 5, 2, 2);
-
- bench_case(1, 64, 100, 100, 3, 1, 1);
- bench_case(1, 64, 56, 56, 3, 1, 1);
- bench_case(1, 64, 28, 28, 3, 1, 1);
- bench_case(1, 64, 100, 100, 3, 1, 2);
- bench_case(1, 64, 56, 56, 3, 1, 2);
- bench_case(1, 64, 28, 28, 3, 1, 2);
-
- bench_case(1, 64, 100, 100, 2, 0, 1);
- bench_case(1, 64, 56, 56, 2, 0, 1);
- bench_case(1, 64, 28, 28, 2, 0, 1);
- bench_case(1, 64, 100, 100, 2, 0, 2);
- bench_case(1, 64, 56, 56, 2, 0, 2);
- bench_case(1, 64, 28, 28, 2, 0, 2);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_FP16_NCHW88) {
- constexpr size_t RUNS = 40;
- std::vector<DType> data_type = {
- dtype::Float16(), dtype::Float16(), dtype::Float16(), dtype::Float16()};
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = P;
- param.pad_w = P;
- param.stride_h = S;
- param.stride_w = S;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW88;
- auto OH = (H + 2 * P - FS) / static_cast<size_t>(S) + 1;
- auto OW = (W + 2 * P - FS) / static_cast<size_t>(S) + 1;
- TensorShape src = {N, IC / 8, H, W, 8};
- TensorShape filter = {OC / 8, IC / 8, FS, FS, 8, 8};
- if (group > 1) {
- filter = {group, OC / group / 8, IC / group / 8, FS, FS, 8, 8};
- param.sparse = param::ConvBias::Sparse::GROUP;
- }
- TensorShape bias = {1, OC / 8, 1, 1, 8};
- TensorShape dst = {N, OC / 8, OH, OW, 8};
-
- SmallVector<TensorShape> shapes{src, filter, bias, {}, dst};
- float computations = (((IC / group) * FS * FS + 1) * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = {
- std::make_pair(shapes, computations)};
- benchmark_impl(
- param, shape_arg, ".+", RUNS, {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- };
- bench_case(1, 64, 64, 28, 28, 3, 1, 1, 1);
- bench_case(1, 64, 64, 28, 28, 5, 1, 2, 1);
- bench_case(1, 64, 64, 28, 28, 7, 1, 3, 1);
-
- bench_case(1, 64, 64, 28, 28, 3, 1, 1, 2);
- bench_case(1, 64, 64, 28, 28, 5, 1, 2, 2);
- bench_case(1, 64, 64, 28, 28, 7, 1, 3, 2);
-
- bench_case(1, 64, 64, 28, 28, 3, 2, 1, 1);
- bench_case(1, 64, 64, 28, 28, 3, 4, 1, 1);
- bench_case(1, 64, 64, 28, 28, 3, 8, 1, 1);
-
- bench_case(1, 16, 16, 28, 28, 3, 1, 1, 1);
- bench_case(1, 32, 32, 28, 28, 3, 1, 1, 1);
- bench_case(1, 128, 128, 28, 28, 3, 1, 1, 1);
- bench_case(1, 256, 256, 28, 28, 3, 1, 1, 1);
-
- bench_case(1, 64, 64, 7, 7, 3, 1, 1, 1);
- bench_case(1, 64, 64, 14, 14, 3, 1, 1, 1);
- bench_case(1, 64, 64, 56, 56, 3, 1, 1, 1);
- bench_case(1, 64, 64, 112, 112, 3, 1, 1, 1);
- }
-
- #endif
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECT_INT8x8x16) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "I8816DIRECT";
- printf("Benchmark I8816DIRECT_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::Int8(), dtype::Int8(), dtype::Int16(), dtype::Int16()};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "I8816DIRECT";
- printf("Benchmark I8816DIRECT_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECT_INT8x8x16_STR2) {
- constexpr size_t RUNS = 50;
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 2);
-
- std::string algo_name = "I8816STRD2";
- printf("Benchmark I8816STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::Int8(), dtype::Int8(), dtype::Int16(), dtype::Int16()};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "I8816STRD2";
- printf("Benchmark I8816STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 2);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_INT8_INT8_STRIDE1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 1);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 1);
-
- std::string algo_name = "S8STRD1";
- printf("Benchmark S8STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "S8STRD1";
- printf("Benchmark S8STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 1);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_NCHW44) {
- constexpr size_t RUNS = 40;
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S, bool is_nchw = false) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = P;
- param.pad_w = P;
- param.stride_h = S;
- param.stride_w = S;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44;
- auto OH = (H + 2 * P - FS) / static_cast<size_t>(S) + 1;
- auto OW = (W + 2 * P - FS) / static_cast<size_t>(S) + 1;
- TensorShape src = {N, IC / 4, H, W, 4};
- TensorShape filter = {OC / 4, IC / 4, FS, FS, 4, 4};
- if (group > 1) {
- filter = {group, OC / group / 4, IC / group / 4, FS, FS, 4, 4};
- param.sparse = param::ConvBias::Sparse::GROUP;
- }
- if (is_nchw) {
- src = {N, IC, H, W};
- filter = {OC / 4, FS, FS, IC, 4};
- }
- TensorShape bias = {1, OC / 4, 1, 1, 4};
- TensorShape dst = {N, OC / 4, OH, OW, 4};
-
- SmallVector<TensorShape> shapes{src, filter, bias, {}, dst};
- float computations = (((IC / group) * FS * FS + 1) * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = {
- std::make_pair(shapes, computations)};
- benchmark_impl(
- param, shape_arg, ".+", RUNS, {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- };
- bench_case(1, 2, 64, 160, 160, 1, 1, 0, 1, true);
- bench_case(1, 3, 64, 224, 224, 7, 1, 3, 2, true);
- bench_case(1, 64, 64, 56, 56, 3, 1, 1, 1);
- bench_case(1, 128, 128, 28, 28, 3, 1, 1, 1);
- bench_case(1, 256, 256, 14, 14, 3, 1, 1, 1);
- bench_case(1, 512, 512, 7, 7, 3, 1, 1, 1);
-
- bench_case(1, 64, 64, 56, 56, 3, 4, 1, 1);
- bench_case(1, 128, 128, 28, 28, 3, 4, 1, 1);
- bench_case(1, 256, 256, 14, 14, 3, 4, 1, 1);
- bench_case(1, 512, 512, 7, 7, 3, 4, 1, 1);
-
- bench_case(1, 4, 64, 224, 224, 7, 1, 1, 2);
- bench_case(1, 256, 128, 56, 56, 3, 1, 1, 2);
- bench_case(1, 512, 256, 28, 28, 3, 1, 1, 2);
- bench_case(1, 4, 32, 224, 224, 3, 1, 1, 2);
-
- bench_case(1, 256, 128, 56, 56, 3, 4, 1, 2);
- bench_case(1, 512, 256, 28, 28, 3, 4, 1, 2);
- }
-
- #if MGB_ENABLE_DOT
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_NCHW44_DOT) {
- constexpr size_t RUNS = 40;
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S, bool is_nchw = false) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = P;
- param.pad_w = P;
- param.stride_h = S;
- param.stride_w = S;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44_DOT;
- auto OH = (H + 2 * P - FS) / static_cast<size_t>(S) + 1;
- auto OW = (W + 2 * P - FS) / static_cast<size_t>(S) + 1;
- TensorShape src = {N, IC / 4, H, W, 4};
- TensorShape filter = {OC / 4, IC / 4, FS, FS, 4, 4};
- if (group > 1) {
- filter = {group, OC / group / 4, IC / group / 4, FS, FS, 4, 4};
- param.sparse = param::ConvBias::Sparse::GROUP;
- }
- if (is_nchw) {
- src = {N, IC, H, W};
- filter = {OC / 4, FS, FS, IC, 4};
- }
- TensorShape bias = {1, OC / 4, 1, 1, 4};
- TensorShape dst = {N, OC / 4, OH, OW, 4};
-
- SmallVector<TensorShape> shapes{src, filter, bias, {}, dst};
- float computations = (((IC / group) * FS * FS + 1) * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = {
- std::make_pair(shapes, computations)};
- benchmark_impl(
- param, shape_arg, ".+", RUNS, {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- };
- bench_case(1, 64, 64, 56, 56, 3, 1, 1, 1);
- bench_case(1, 128, 128, 28, 28, 3, 1, 1, 1);
- bench_case(1, 256, 256, 14, 14, 3, 1, 1, 1);
- bench_case(1, 512, 512, 7, 7, 3, 1, 1, 1);
-
- bench_case(1, 64, 64, 56, 56, 3, 4, 1, 1);
- bench_case(1, 128, 128, 28, 28, 3, 4, 1, 1);
- bench_case(1, 256, 256, 14, 14, 3, 4, 1, 1);
- bench_case(1, 512, 512, 7, 7, 3, 4, 1, 1);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_NCHW44_DOT_S2) {
- constexpr size_t RUNS = 40;
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S, bool is_nchw = false) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = P;
- param.pad_w = P;
- param.stride_h = S;
- param.stride_w = S;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44_DOT;
- auto OH = (H + 2 * P - FS) / static_cast<size_t>(S) + 1;
- auto OW = (W + 2 * P - FS) / static_cast<size_t>(S) + 1;
- TensorShape src = {N, IC / 4, H, W, 4};
- TensorShape filter = {OC / 4, IC / 4, FS, FS, 4, 4};
- if (group > 1) {
- filter = {group, OC / group / 4, IC / group / 4, FS, FS, 4, 4};
- param.sparse = param::ConvBias::Sparse::GROUP;
- }
- if (is_nchw) {
- src = {N, IC, H, W};
- filter = {OC / 4, FS, FS, IC, 4};
- }
- TensorShape bias = {1, OC / 4, 1, 1, 4};
- TensorShape dst = {N, OC / 4, OH, OW, 4};
-
- SmallVector<TensorShape> shapes{src, filter, bias, {}, dst};
- float computations = (((IC / group) * FS * FS + 1) * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = {
- std::make_pair(shapes, computations)};
- benchmark_impl(
- param, shape_arg, ".+", RUNS, {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- };
- bench_case(1, 64, 64, 56, 56, 3, 1, 1, 2);
- bench_case(1, 64, 64, 128, 128, 3, 1, 1, 2);
- bench_case(1, 64, 64, 256, 256, 3, 1, 1, 2);
- bench_case(1, 64, 64, 156, 156, 3, 1, 1, 2);
- bench_case(1, 128, 128, 28, 28, 3, 1, 1, 2);
- bench_case(1, 256, 256, 14, 14, 3, 1, 1, 2);
- bench_case(1, 512, 512, 7, 7, 3, 1, 1, 2);
-
- bench_case(1, 64, 64, 56, 56, 3, 4, 1, 2);
- bench_case(1, 128, 128, 28, 28, 3, 4, 1, 2);
- bench_case(1, 256, 256, 14, 14, 3, 4, 1, 2);
- bench_case(1, 512, 512, 7, 7, 3, 4, 1, 2);
- }
-
- #endif
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_FLOAT_NCHW44) {
- constexpr size_t RUNS = 40;
- std::vector<DType> data_type = {
- dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32()};
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S, bool is_nchw = false) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = P;
- param.pad_w = P;
- param.stride_h = S;
- param.stride_w = S;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44;
- auto OH = (H + 2 * P - FS) / static_cast<size_t>(S) + 1;
- auto OW = (W + 2 * P - FS) / static_cast<size_t>(S) + 1;
- TensorShape src = {N, IC / 4, H, W, 4};
- TensorShape filter = {OC / 4, IC / 4, FS, FS, 4, 4};
- if (group > 1) {
- filter = {group, OC / group / 4, IC / group / 4, FS, FS, 4, 4};
- param.sparse = param::ConvBias::Sparse::GROUP;
- }
- if (is_nchw) {
- src = {N, IC, H, W};
- filter = {OC / 4, FS, FS, IC, 4};
- }
- TensorShape bias = {1, OC / 4, 1, 1, 4};
- TensorShape dst = {N, OC / 4, OH, OW, 4};
-
- SmallVector<TensorShape> shapes{src, filter, bias, {}, dst};
- float computations = (((IC / group) * FS * FS + 1) * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = {
- std::make_pair(shapes, computations)};
- benchmark_impl(
- param, shape_arg, ".+", RUNS, {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- };
- bench_case(1, 64, 64, 56, 56, 3, 1, 1, 2);
- bench_case(1, 128, 128, 28, 28, 3, 1, 1, 2);
- bench_case(1, 256, 256, 14, 14, 3, 1, 1, 2);
- bench_case(1, 512, 512, 7, 7, 3, 1, 1, 2);
-
- bench_case(1, 64, 64, 56, 56, 3, 4, 1, 2);
- bench_case(1, 128, 128, 28, 28, 3, 4, 1, 2);
- bench_case(1, 256, 256, 14, 14, 3, 4, 1, 2);
- bench_case(1, 512, 512, 7, 7, 3, 4, 1, 2);
-
- bench_case(1, 64, 64, 56 * 2, 56 * 2, 3, 4, 1, 2);
- bench_case(1, 128, 128, 28 * 2, 28 * 2, 3, 4, 1, 2);
- bench_case(1, 256, 256, 14 * 2, 14 * 2, 3, 4, 1, 2);
- bench_case(1, 512, 512, 7 * 2, 7 * 2, 3, 4, 1, 2);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_INT8_INT8_STRIDE2) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 2);
-
- std::string algo_name = "S8STRD2";
- printf("Benchmark S8STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "S8STRD2";
- printf("Benchmark S8STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 2);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- #if MGB_ENABLE_DOT
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_INT8_INT8_INT8_STRIDE1_WITHDOTPROD) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 1);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 1);
-
- std::string algo_name = "ARMDOTS8STRD1";
- printf("Benchmark ARMDOTS8STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "ARMDOTS8STRD1";
- printf("Benchmark ARMDOTS8STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 1);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_INT8_INT8_INT8_STRIDE2_WITHDOTPROD) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 2);
-
- std::string algo_name = "ARMDOTS8STRD2";
- printf("Benchmark ARMDOTS8STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "ARMDOTS8STRD2";
- printf("Benchmark ARMDOTS8STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 2);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- #endif
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_QUINT8_QUINT8_QUINT8_STRIDE1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 1);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 1);
-
- std::string algo_name = "QU8STRD1";
- printf("Benchmark QU8STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::Quantized8Asymm(0.2f, 100), dtype::Quantized8Asymm(0.2f, 120),
- dtype::QuantizedS32(0.04f), dtype::Quantized8Asymm(1.4f, 110)};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "QU8STRD1";
- printf("Benchmark QU8STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 1);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_QUINT8_QUINT8_QUINT8_STRIDE2) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 2);
-
- std::string algo_name = "QU8STRD2";
- printf("Benchmark QU8STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::Quantized8Asymm(0.2f, 100), dtype::Quantized8Asymm(0.2f, 120),
- dtype::QuantizedS32(0.04f), dtype::Quantized8Asymm(1.4f, 110)};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "QU8STRD2";
- printf("Benchmark QU8STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 2);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- #if MGB_ENABLE_DOT
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_QUINT8_QUINT8_QUINT8_STRIDE1_WITHDOTPROD) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4, 1, 1);
- bench_case(1, 32, 32, 200, 200, 3, 32, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 32, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 32, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 32, 1, 1);
-
- std::string algo_name = "ARMDOTU8STRD1";
- printf("Benchmark ARMDOTU8STRD1_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::Quantized8Asymm(0.2f, 100), dtype::Quantized8Asymm(0.2f, 120),
- dtype::QuantizedS32(0.04f), dtype::Quantized8Asymm(1.4f, 110)};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "ARMDOTU8STRD1";
- printf("Benchmark ARMDOTS8STRD1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1, 1, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1, 1, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1, 1, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1, 1, 1);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_QUINT8_QUINT8_QUINT8_STRIDE2_WITHDOTPROD) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group, size_t P, size_t S) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1}};
- TensorShape dst{N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 5, 4, 1, 2);
- bench_case(1, 32, 32, 200, 200, 5, 32, 1, 2);
- bench_case(1, 32, 32, 128, 128, 5, 4, 1, 2);
- bench_case(1, 32, 32, 128, 128, 5, 32, 1, 2);
- bench_case(1, 32, 32, 100, 100, 5, 4, 1, 2);
- bench_case(1, 32, 32, 100, 100, 5, 32, 1, 2);
- bench_case(1, 32, 32, 80, 80, 5, 4, 1, 2);
- bench_case(1, 32, 32, 80, 80, 5, 32, 1, 2);
-
- std::string algo_name = "ARMDOTU8STRD2";
- printf("Benchmark ARMDOTU8STRD2_LARGE_GROUP algo\n");
- std::vector<DType> data_type = {
- dtype::Quantized8Asymm(0.2f, 100), dtype::Quantized8Asymm(0.2f, 120),
- dtype::QuantizedS32(0.04f), dtype::Quantized8Asymm(1.4f, 110)};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
-
- algo_name = "ARMDOTU8STRD2";
- printf("Benchmark ARMDOTU8STRD2_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 5, 1, 1, 2);
- bench_case(1, 32, 32, 128, 128, 5, 1, 1, 2);
- bench_case(1, 32, 32, 100, 100, 5, 1, 1, 2);
- bench_case(1, 32, 32, 80, 80, 5, 1, 1, 2);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
- #endif
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_WINOGRAD_F32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4);
-
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 512, 256, 14, 14, 3, 1);
- bench_case(1, 512, 128, 14, 14, 3, 1);
- bench_case(1, 512, 64, 14, 14, 3, 1);
-
- bench_case(1, 512, 512, 7, 7, 3, 1);
- bench_case(1, 512, 256, 7, 7, 3, 1);
- bench_case(1, 512, 128, 7, 7, 3, 1);
- bench_case(1, 512, 64, 7, 7, 3, 1);
-
- std::string algo_name;
- #if MEGDNN_AARCH64
- algo_name = "WINOGRAD:AARCH64_F32_MK4_4x16:4:2";
- #else
- algo_name = "WINOGRAD:ARMV7_F32_MK4_4x8:4:2";
- #endif
- std::vector<DType> data_type = {
- dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32()};
- printf("Benchmark WINOGRAD_F32_MK4 algo\n");
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_WINOGRAD_INT8) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 4);
-
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 512, 256, 14, 14, 3, 1);
- bench_case(1, 512, 128, 14, 14, 3, 1);
- bench_case(1, 512, 64, 14, 14, 3, 1);
-
- bench_case(1, 512, 512, 7, 7, 3, 1);
- bench_case(1, 512, 256, 7, 7, 3, 1);
- bench_case(1, 512, 128, 7, 7, 3, 1);
- bench_case(1, 512, 64, 7, 7, 3, 1);
-
- std::string algo_name;
- #if MEGDNN_AARCH64
- algo_name = "WINOGRAD:AARCH64_INT16X16X32_MK8_8X8:8:2:32";
- #else
- algo_name = "WINOGRAD:ARMV7_INT16X16X32_MK8_4X8:8:2:32";
- #endif
-
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- printf("Benchmark WINOGRAD_IN8_MK8 algo\n");
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_WINOGRAD_NCHW44_INT8_MK8) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group) {
- SmallVector<TensorShape> shapes{
- {N, IC / 4, H, W, 4},
- {OC / 4, IC / 4, FS, FS, 4, 4},
- {1, OC / 4, 1, 1, 4},
- {},
- {N, OC / 4, H, W, 4}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
-
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 512, 256, 14, 14, 3, 1);
- bench_case(1, 512, 128, 14, 14, 3, 1);
- bench_case(1, 512, 64, 14, 14, 3, 1);
-
- bench_case(1, 512, 512, 7, 7, 3, 1);
- bench_case(1, 512, 256, 7, 7, 3, 1);
- bench_case(1, 512, 128, 7, 7, 3, 1);
- bench_case(1, 512, 64, 7, 7, 3, 1);
-
- std::string algo_name;
- #if MEGDNN_AARCH64
- algo_name = "WINOGRAD_NCHW44:AARCH64_INT16X16X32_MK8_8X8:8:2:32";
- #else
- algo_name = "WINOGRAD_NCHW44:ARMV7_INT16X16X32_MK8_4X8:8:2:32";
- #endif
-
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- printf("Benchmark WINOGRAD_INT8_MK8 algo\n");
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_WINOGRAD_NCHW44_INT8_COMP_F32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::DENSE; // GROUP;
- param.format = param::ConvBias::Format::NCHW44;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group) {
- SmallVector<TensorShape> shapes{
- {N, IC / 4, H, W, 4},
- {OC / 4, IC / 4, FS, FS, 4, 4},
- {1, OC / 4, 1, 1, 4},
- {},
- {N, OC / 4, H, W, 4}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
-
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 512, 256, 14, 14, 3, 1);
- bench_case(1, 512, 128, 14, 14, 3, 1);
- bench_case(1, 512, 64, 14, 14, 3, 1);
-
- bench_case(1, 512, 512, 7, 7, 3, 1);
- bench_case(1, 512, 256, 7, 7, 3, 1);
- bench_case(1, 512, 128, 7, 7, 3, 1);
- bench_case(1, 512, 64, 7, 7, 3, 1);
-
- std::string algo_name;
- #if MEGDNN_AARCH64
- algo_name = "WINOGRAD_NCHW44:AARCH64_F32_MK4_4x16:4:2:32";
- #else
- algo_name = "WINOGRAD_NCHW44:ARMV7_F32_MK4_4x8:4:2:32";
- #endif
-
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- printf("Benchmark WINOGRAD_INT8_NCHW44_MK4_COMP_F32 algo\n");
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_IM2COL_FP32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W},
- {OC, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
- std::vector<DType> data_type = {
- dtype::Float32(), dtype::Float32(), dtype::Float32(), dtype::Float32()};
- bench_case(1, 32, 32, 300, 300, 3, 1);
- bench_case(1, 32, 32, 400, 400, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- bench_case(1, 32, 64, 200, 200, 3, 1);
- bench_case(1, 32, 64, 128, 128, 3, 1);
- bench_case(1, 32, 64, 100, 100, 3, 1);
- bench_case(1, 32, 64, 80, 80, 3, 1);
- bench_case(1, 32, 128, 200, 200, 3, 1);
- bench_case(1, 32, 128, 128, 128, 3, 1);
- bench_case(1, 32, 128, 100, 100, 3, 1);
- bench_case(1, 32, 128, 80, 80, 3, 1);
-
- bench_case(1, 64, 32, 7, 7, 3, 1);
- bench_case(1, 64, 64, 7, 7, 3, 1);
- bench_case(1, 64, 128, 7, 7, 3, 1);
- bench_case(1, 64, 256, 7, 7, 3, 1);
- bench_case(1, 64, 512, 7, 7, 3, 1);
- bench_case(1, 64, 1024, 7, 7, 3, 1);
-
- bench_case(1, 64, 32, 14, 14, 3, 1);
- bench_case(1, 64, 64, 14, 14, 3, 1);
- bench_case(1, 64, 128, 14, 14, 3, 1);
- bench_case(1, 64, 256, 14, 14, 3, 1);
- bench_case(1, 64, 512, 14, 14, 3, 1);
-
- bench_case(1, 64, 1024, 14, 14, 3, 1);
- bench_case(1, 128, 128, 14, 14, 3, 1);
- bench_case(1, 128, 256, 14, 14, 3, 1);
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 256, 512, 14, 14, 3, 1);
- bench_case(1, 512, 1024, 14, 14, 3, 1);
- bench_case(1, 1024, 1024, 14, 14, 3, 1);
- std::string algo_name = "IM2COLMATMUL:AARCH64_F32K8X12X1:96";
- printf("Benchmark IM2COLMATMUL:AARCH64_F32K8X12X1algo:96\n");
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- algo_name = "IM2COLMATMUL:AARCH64_F32K8X12X1:192";
- printf("Benchmark IM2COLMATMUL:AARCH64_F32K8X12X1algo:192\n");
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- algo_name = "IM2COLMATMUL:AARCH64_F32K8X12X1:384";
- printf("Benchmark IM2COLMATMUL:AARCH64_F32K8X12X1algo:384\n");
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
- }
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CHANNEL_WISE_INT8_INT8_INT8_STRIDE1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
- param.format = param::ConvBias::Format::NCHW44;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t H, size_t W, size_t FS,
- size_t P) {
- size_t group = IC;
- size_t OC = IC;
- size_t S = 1;
- SmallVector<TensorShape> shapes{
- {N, IC, H, W, 4},
- {group, 1, 1, FS, FS, 4},
- {1, OC, 1, 1, 4},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1, 4}};
- TensorShape dst{N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1, 4};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
- bench_case(1, 128, 200, 200, 3, 1);
- bench_case(1, 128, 128, 128, 3, 1);
- bench_case(1, 128, 100, 100, 3, 1);
- bench_case(1, 128, 80, 80, 3, 1);
- bench_case(1, 128, 56, 56, 3, 1);
- bench_case(1, 128, 28, 28, 3, 1);
- bench_case(1, 128, 14, 14, 3, 1);
-
- bench_case(1, 64, 200, 200, 3, 1);
- bench_case(1, 64, 128, 128, 3, 1);
- bench_case(1, 64, 100, 100, 3, 1);
- bench_case(1, 64, 80, 80, 3, 1);
- bench_case(1, 64, 56, 56, 3, 1);
- bench_case(1, 64, 28, 28, 3, 1);
- bench_case(1, 64, 14, 14, 3, 1);
-
- bench_case(1, 32, 200, 200, 3, 1);
- bench_case(1, 32, 128, 128, 3, 1);
- bench_case(1, 32, 100, 100, 3, 1);
- bench_case(1, 32, 80, 80, 3, 1);
- bench_case(1, 32, 56, 56, 3, 1);
- bench_case(1, 32, 28, 28, 3, 1);
- bench_case(1, 32, 14, 14, 3, 1);
-
- std::string algo_name = "S8_CHAN_WISE_STRD1_NCHW44";
- printf("Benchmarker S8_CHAN_WISE_STRD1_NCHW44 algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CHANNEL_WISE_INT8_INT8_INT16_STRIDE1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
- param.format = param::ConvBias::Format::NCHW44;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t H, size_t W, size_t FS,
- size_t P) {
- size_t group = IC;
- size_t OC = IC;
- size_t S = 1;
- SmallVector<TensorShape> shapes{
- {N, IC, H, W, 4},
- {group, 1, 1, FS, FS, 4},
- {1, OC, 1, 1, 4},
- {},
- {N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1, 4}};
- TensorShape dst{N, OC, (H + 2 * P - FS) / S + 1, (W + 2 * P - FS) / S + 1, 4};
- float computations = ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
- bench_case(1, 128, 200, 200, 3, 1);
- bench_case(1, 128, 128, 128, 3, 1);
- bench_case(1, 128, 100, 100, 3, 1);
- bench_case(1, 128, 80, 80, 3, 1);
- bench_case(1, 128, 56, 56, 3, 1);
- bench_case(1, 128, 28, 28, 3, 1);
- bench_case(1, 128, 14, 14, 3, 1);
-
- bench_case(1, 64, 200, 200, 3, 1);
- bench_case(1, 64, 128, 128, 3, 1);
- bench_case(1, 64, 100, 100, 3, 1);
- bench_case(1, 64, 80, 80, 3, 1);
- bench_case(1, 64, 56, 56, 3, 1);
- bench_case(1, 64, 28, 28, 3, 1);
- bench_case(1, 64, 14, 14, 3, 1);
-
- bench_case(1, 32, 200, 200, 3, 1);
- bench_case(1, 32, 128, 128, 3, 1);
- bench_case(1, 32, 100, 100, 3, 1);
- bench_case(1, 32, 80, 80, 3, 1);
- bench_case(1, 32, 56, 56, 3, 1);
- bench_case(1, 32, 28, 28, 3, 1);
- bench_case(1, 32, 14, 14, 3, 1);
-
- std::string algo_name = "S8x8x16_CHAN_WISE_STRD1_STRD2_NCHW44";
- printf("Benchmarker S8x8x16_CHAN_WISE_STRD1_STRD2_NCHW44 algo\n");
- std::vector<DType> data_type = {
- dtype::Int8(), dtype::Int8(), dtype::Int16(), dtype::Int16()};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_IM2COL_NCHW44_INT8x8x32_STRIDE1) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.format = param::ConvBias::Format::NCHW44;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS,
- size_t group = 1) {
- SmallVector<TensorShape> shapes{
- {N, IC, H, W, 4},
- {OC, IC / group, FS, FS, 4, 4},
- {/*1, OC, 1, 1*/},
- {},
- {N, OC, H, W, 4}};
- TensorShape dst{N, OC, H, W, 4};
- float computations = ((4 * IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 300, 300, 3, 1);
- bench_case(1, 32, 32, 400, 400, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- bench_case(1, 32, 64, 200, 200, 3, 1);
- bench_case(1, 32, 64, 128, 128, 3, 1);
- bench_case(1, 32, 64, 100, 100, 3, 1);
- bench_case(1, 32, 64, 80, 80, 3, 1);
- bench_case(1, 32, 128, 200, 200, 3, 1);
- bench_case(1, 32, 128, 128, 128, 3, 1);
- bench_case(1, 32, 128, 100, 100, 3, 1);
- bench_case(1, 32, 128, 80, 80, 3, 1);
- #if 1
- bench_case(1, 64, 32, 7, 7, 3, 1);
- bench_case(1, 64, 64, 7, 7, 3, 1);
- bench_case(1, 64, 128, 7, 7, 3, 1);
- bench_case(1, 64, 256, 7, 7, 3, 1);
- bench_case(1, 64, 512, 7, 7, 3, 1);
- bench_case(1, 64, 1024, 7, 7, 3, 1);
-
- bench_case(1, 64, 32, 14, 14, 3, 1);
- bench_case(1, 64, 64, 14, 14, 3, 1);
- bench_case(1, 64, 128, 14, 14, 3, 1);
- bench_case(1, 64, 256, 14, 14, 3, 1);
- bench_case(1, 64, 512, 14, 14, 3, 1);
-
- bench_case(1, 64, 1024, 14, 14, 3, 1);
- bench_case(1, 128, 128, 14, 14, 3, 1);
- bench_case(1, 128, 256, 14, 14, 3, 1);
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 256, 512, 14, 14, 3, 1);
- bench_case(1, 512, 1024, 14, 14, 3, 1);
- bench_case(1, 1024, 1024, 14, 14, 3, 1);
- #endif
- std::string algo_name = "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96";
- printf("Benchmarker IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96 algo\n");
- std::vector<DType> data_type = {
- dtype::QuantizedS8(2.5f),
- dtype::QuantizedS8(2.5f),
- dtype::QuantizedS32(6.25f),
- {}};
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
-
- algo_name = "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:192";
- printf("Benchmarker IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:192 "
- "algo\n");
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
-
- algo_name = "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:384";
- printf("Benchmarker IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:384 "
- "algo\n");
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- }
-
- #endif
-
- /*================== BENCHMARK MULTITHREAD CONV1X1 =====================*/
- #if MEGDNN_WITH_BENCHMARK
-
- namespace {
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- get_conv1x1_multithread_benchmark_args() {
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation;
- auto bench_case = [&](size_t IC, size_t OC, size_t H, size_t W) {
- SmallVector<TensorShape> shapes{
- {1, IC, H, W}, {OC, IC, 1, 1}, {1, OC, 1, 1}, {}, {1, OC, H, W}};
- TensorShape dst{1, OC, H, W};
- float computations =
- (IC * dst.total_nr_elems() * 2 + dst.total_nr_elems()) * 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
- bench_case(32, 32, 300, 300);
- bench_case(32, 32, 400, 400);
- bench_case(32, 32, 100, 100);
- bench_case(32, 32, 80, 80);
- bench_case(32, 64, 200, 200);
- bench_case(32, 64, 128, 128);
- bench_case(32, 64, 100, 100);
- bench_case(32, 64, 80, 80);
- bench_case(32, 128, 200, 200);
- bench_case(32, 128, 128, 128);
- bench_case(32, 128, 100, 100);
- bench_case(32, 128, 80, 80);
-
- bench_case(64, 32, 7, 7);
- bench_case(64, 64, 7, 7);
- bench_case(64, 128, 7, 7);
- bench_case(64, 256, 7, 7);
- bench_case(64, 512, 7, 7);
- bench_case(64, 1024, 7, 7);
-
- bench_case(64, 32, 14, 14);
- bench_case(64, 64, 14, 14);
- bench_case(64, 128, 14, 14);
- bench_case(64, 256, 14, 14);
- bench_case(64, 512, 14, 14);
-
- bench_case(64, 1024, 14, 14);
- bench_case(128, 128, 14, 14);
- bench_case(128, 256, 14, 14);
- bench_case(512, 512, 14, 14);
- bench_case(256, 512, 14, 14);
- bench_case(512, 1024, 14, 14);
- bench_case(1024, 1024, 14, 14);
- return shapes_and_computation;
- }
-
- void conv1x1_multithread_benchmark(
- const char* algo_name, DType stype, DType ftype, DType btype, DType dtype) {
- constexpr size_t RUNS = 50;
- std::vector<std::pair<SmallVector<TensorShape>, float>> shapes_and_computation =
- get_conv1x1_multithread_benchmark_args();
-
- std::vector<DType> data_type = {stype, ftype, btype, dtype};
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 0;
- param.pad_w = 0;
- param.stride_h = 1;
- param.stride_w = 1;
-
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {4, {4, 5, 6, 7}}, {1, {7}},
- data_type);
- benchmark_impl(
- param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}}, {1, {4}},
- data_type);
- shapes_and_computation.clear();
- }
- } // namespace
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_CONV1X1_S1_FP32) {
- #if MEGDNN_AARCH64
- conv1x1_multithread_benchmark(
- "CONV1x1:AARCH64_F32K8X12X1:8", dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32());
- #else
- conv1x1_multithread_benchmark(
- "CONV1x1:ARMV7_F32:8", dtype::Float32(), dtype::Float32(), dtype::Float32(),
- dtype::Float32());
- #endif
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_CONV1X1_S1_QUANTIZEDASYM) {
- dtype::Quantized8Asymm stype(0.2f, 100);
- dtype::Quantized8Asymm ftype(0.2f, 120);
- dtype::QuantizedS32 btype(0.04f);
- dtype::Quantized8Asymm dtype(1.4f, 110);
- #if MEGDNN_AARCH64
- #if MGB_ENABLE_DOT
- conv1x1_multithread_benchmark(
- "CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:8", stype, ftype, btype, dtype);
- #else
- conv1x1_multithread_benchmark(
- "CONV1x1:AARCH64_QUINT8_K8X8X8:8", stype, ftype, btype, dtype);
- #endif
- #else
- conv1x1_multithread_benchmark(
- "CONV1x1:ARMV7_QUINT8_K4X8X8:8", stype, ftype, btype, dtype);
- #endif
- }
-
- #endif
-
- // vim: syntax=cpp.doxygen
|