|
- /**
- * \file dnn/test/rocm/chanwise_convolution.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "include/hcc_detail/hcc_defs_prologue.h"
- #include "megdnn/oprs/nn.h"
-
- #include "megcore_rocm.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/convolution.h"
- #include "test/common/tensor.h"
- #include "test/common/workspace_wrapper.h"
- #include "test/rocm/fixture.h"
-
- #include "hip_header.h"
-
- using namespace megdnn;
- using namespace test;
-
- namespace {
-
- #if MEGDNN_WITH_BENCHMARK
- bool check_need_full_bench() {
- if (getenv("MEGDNN_CHANWISE_CONV_FULLBENCH"))
- return true;
- printf("set MEGDNN_CHANWISE_CONV_FULLBENCH to run full benchmark\n");
- return false;
- }
- #endif
-
- Convolution::Param gconv_param(Convolution::Param p) {
- p.sparse = Convolution::Param::Sparse::GROUP;
- return p;
- }
-
- template <int P0, int P1, int P2>
- class BenchmarkEnv {
- Handle *handle, *handle_cpu;
- std::unique_ptr<GaussianRNG> rng;
- TensorLayout lsrc, lflt0, lflt1, ldst;
- std::unique_ptr<Tensor<>> src0, src1, flt0, flt0_cpu, flt1, flt1_cpu, dst0, dst1;
- hipEvent_t hip_ev[3];
- hipStream_t hip_stream;
- size_t pad_h, pad_w;
-
- template <typename T>
- static std::tuple<T, T, T> shuffle(std::tuple<T, T, T> data) {
- return std::make_tuple(
- std::get<P0>(data), std::get<P1>(data), std::get<P2>(data));
- }
-
- public:
- BenchmarkEnv(Handle* handle, Handle* handle_cpu) {
- this->handle = handle;
- this->handle_cpu = handle_cpu;
- rng = handle->create_operator<GaussianRNG>();
- // make cpu handle used
- handle_cpu->create_operator<Sleep>()->exec();
-
- for (int i = 0; i < 3; ++i)
- hipEventCreate(&hip_ev[i]);
- megcoreGetROCMStream(handle->megcore_computing_handle(), &hip_stream);
- }
-
- ~BenchmarkEnv() {
- for (int i = 0; i < 3; ++i)
- hipEventDestroy(hip_ev[i]);
- }
-
- void alloc(
- size_t N, size_t IC, size_t IH, size_t IW, size_t CHL_MUL, size_t FH,
- size_t FW, size_t PH, size_t PW) {
- pad_h = PH;
- pad_w = PW;
- auto mkly = [](const TensorShape& s) {
- return TensorLayout{s, dtype::Float32()};
- };
- lsrc = mkly({N, IC, IH, IW});
- lflt0 = mkly({CHL_MUL * IC, IC, FH, FW});
- lflt1 = mkly({IC, CHL_MUL, 1, FH, FW});
- ldst = mkly({N, IC * CHL_MUL, IH - FH + 1 + PH * 2, IW - FW + 1 + PW * 2});
- src0.reset(new Tensor<>(handle, lsrc));
- src1.reset(new Tensor<>(handle, lsrc));
- flt0.reset(new Tensor<>(handle, lflt0));
- flt0_cpu.reset(new Tensor<>(handle_cpu, lflt0));
- flt1.reset(new Tensor<>(handle, lflt1));
- flt1_cpu.reset(new Tensor<>(handle_cpu, lflt1));
- dst0.reset(new Tensor<>(handle, ldst));
- dst1.reset(new Tensor<>(handle, ldst));
- }
-
- void fill_src() {
- rng->exec(src0->tensornd(), {});
- megdnn_memcpy_D2D(handle, src1->ptr(), src0->ptr(), lsrc.span().dist_byte());
- }
-
- void fill_flt() {
- rng->exec(flt1->tensornd(), {});
- megdnn_memcpy_D2H(
- handle, flt1_cpu->ptr(), flt1->ptr(), lflt1.span().dist_byte());
-
- const size_t IC = lflt1[0], CHL_MUL = lflt1[1], FSIZE = lflt1[3] * lflt1[4];
-
- // fill flt0 from flt1
- float* src = flt1_cpu->ptr();
- float* dst = flt0_cpu->ptr();
- memset(dst, 0, lflt0.span().dist_byte());
- for (size_t i = 0; i < IC; ++i) {
- for (size_t j = 0; j < CHL_MUL; ++j) {
- memcpy(dst + ((i * CHL_MUL + j) * IC + i) * FSIZE,
- src + (i * CHL_MUL + j) * FSIZE, FSIZE * sizeof(float));
- }
- }
-
- megdnn_memcpy_H2D(handle, flt0->ptr(), dst, lflt0.span().dist_byte());
- }
-
- void fill_dst() {
- rng->exec(dst0->tensornd(), {});
- megdnn_memcpy_D2D(handle, dst1->ptr(), dst0->ptr(), ldst.span().dist_byte());
- }
-
- template <class Opr>
- void exec(Opr* opr0, Opr* opr1) {
- opr0->param().pad_h = pad_h;
- opr0->param().pad_w = pad_w;
- opr1->param() = opr0->param();
- opr1->param().sparse = param::Convolution::Sparse::GROUP;
-
- TensorND a0, b0, c0, a1, b1, c1;
- std::tie(a0, b0, c0) = shuffle(
- std::make_tuple(src0->tensornd(), flt0->tensornd(), dst0->tensornd()));
- std::tie(a1, b1, c1) = shuffle(
- std::make_tuple(src1->tensornd(), flt1->tensornd(), dst1->tensornd()));
- WorkspaceWrapper wk(
- handle,
- std::max(
- opr0->get_workspace_in_bytes(a0.layout, b0.layout, c0.layout),
- opr1->get_workspace_in_bytes(a1.layout, b1.layout, c1.layout)));
- hipProfilerStart();
- hipEventRecord(hip_ev[0], hip_stream);
- opr0->exec(a0, b0, c0, wk.workspace());
- hipEventRecord(hip_ev[1], hip_stream);
- opr1->exec(a1, b1, c1, wk.workspace());
- hipEventRecord(hip_ev[2], hip_stream);
- hipProfilerStop();
-
- if (getenv("MEGDNN_CHANWISE_CONV_VERBOSE") ||
- getenv("MEGDNN_CHANWISE_CONV_FULLBENCH")) {
- hipStreamSynchronize(hip_stream);
- float t0 = -1, t1 = -1;
- hipEventElapsedTime(&t0, hip_ev[0], hip_ev[1]);
- hipEventElapsedTime(&t1, hip_ev[1], hip_ev[2]);
- printf("%s;%s;%s: miopen/megdnn: %.3fms/%.3fms=%.3f\n",
- lsrc.TensorShape::to_string().c_str(),
- lflt1.TensorShape::to_string().c_str(),
- ldst.TensorShape::to_string().c_str(), t0, t1, t0 / t1);
- }
- }
-
- void cmp_dst() {
- Tensor<> dst0_cpu(handle_cpu, ldst), dst1_cpu(handle_cpu, ldst);
- megdnn_memcpy_D2H(handle, dst0_cpu.ptr(), dst0->ptr(), ldst.span().dist_byte());
- megdnn_memcpy_D2H(handle, dst1_cpu.ptr(), dst1->ptr(), ldst.span().dist_byte());
- dst0_cpu.check_with(dst1_cpu);
- }
-
- void cmp_src() {
- Tensor<> src0_cpu(handle_cpu, lsrc), src1_cpu(handle_cpu, lsrc);
- megdnn_memcpy_D2H(handle, src0_cpu.ptr(), src0->ptr(), lsrc.span().dist_byte());
- megdnn_memcpy_D2H(handle, src1_cpu.ptr(), src1->ptr(), lsrc.span().dist_byte());
- src0_cpu.check_with(src1_cpu);
- }
-
- void cmp_flt() {
- Tensor<> flt0_cpu(handle_cpu, lflt0), flt1_cpu(handle_cpu, lflt1);
- float* p0 = flt0_cpu.ptr();
- float* p1 = flt1_cpu.ptr();
- megdnn_memcpy_D2H(handle, p0, flt0->ptr(), lflt0.span().dist_byte());
- megdnn_memcpy_D2H(handle, p1, flt1->ptr(), lflt1.span().dist_byte());
-
- size_t IC = lflt1[0], CHL_MUL = lflt1[1], FSIZE = lflt1[3] * lflt1[4];
-
- double tot_err = 0, tot_err_num = 0;
- for (size_t i = 0; i < IC; ++i) {
- for (size_t j = 0; j < CHL_MUL; ++j) {
- auto t0 = p0 + ((i * CHL_MUL + j) * IC + i) * FSIZE,
- t1 = p1 + (i * CHL_MUL + j) * FSIZE;
- for (size_t k = 0; k < FSIZE; ++k) {
- auto err = std::abs(diff(t0[k], t1[k]));
- tot_err += err;
- tot_err_num += 1;
- ASSERT_LT(err, 1e-2) << "failed at " << i << " " << j << " " << k
- << " vals=" << t0[k] << "," << t1[k];
- }
- }
- }
- auto avg_err = tot_err / tot_err_num;
- ASSERT_LT(avg_err, 1e-4);
- }
- };
-
- } // anonymous namespace
-
- constexpr auto M = Convolution::Mode::CROSS_CORRELATION;
-
- TEST_F(ROCM, CHANWISE_CONVOLUTION_FORWARD) {
- Checker<Convolution> checker(handle_rocm());
- bool require_algo = false;
- checker.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CHANNEL_WISE", &require_algo));
-
- // simple case
- checker.set_param(gconv_param({M, 0, 0, 1, 1}))
- .execs({{1, 1, 2, 2}, {1, 1, 1, 2, 2}, {}})
- .execs({{1, 1, 5, 5}, {1, 1, 1, 2, 2}, {}});
-
- checker.execs({{2, 2, 5, 5}, {2, 3, 1, 2, 2}, {2, 6, 4, 4}});
-
- checker.set_param(gconv_param({M, 1, 1, 1, 1}))
- .execs({{2, 2, 5, 5}, {2, 1, 1, 2, 2}, {}});
-
- checker.set_param(gconv_param({M, 2, 3, 2, 1}))
- .execs({{32, 12, 20, 10}, {12, 2, 1, 4, 5}, {}});
-
- // padding larger than kern
- checker.set_param(gconv_param({M, 20, 30, 4, 5}))
- .execs({{32, 12, 20, 10}, {12, 2, 1, 4, 5}, {}});
- }
-
- TEST_F(ROCM, CHANWISE_CONVOLUTION_BACKWARD_DATA) {
- Checker<ConvolutionBackwardData> checker(handle_rocm());
-
- checker.set_param(gconv_param({M, 0, 0, 1, 1}))
- .execs({{1, 1, 1, 2, 2}, {1, 1, 1, 1}, {1, 1, 2, 2}})
- .execs({{1, 1, 1, 2, 2}, {1, 1, 5, 5}, {1, 1, 6, 6}});
-
- checker.execs({{2, 1, 1, 2, 2}, {1, 2, 1, 1}, {1, 2, 2, 2}})
- .execs({{2, 1, 1, 2, 2}, {1, 2, 5, 5}, {1, 2, 6, 6}})
- .execs({{2, 3, 1, 2, 2}, {2, 6, 5, 5}, {2, 2, 6, 6}});
-
- checker.set_param(gconv_param({M, 1, 1, 1, 1}))
- .execs({{2, 1, 1, 2, 2}, {2, 2, 5, 5}, {2, 2, 4, 4}});
-
- checker.set_param(gconv_param({M, 2, 3, 2, 1}))
- .execs({{12, 3, 1, 4, 5}, {32, 36, 20, 10}, {32, 12, 39, 8}});
-
- // padding larger than kern
- checker.set_param(gconv_param({M, 20, 30, 4, 5}))
- .execs({{6, 2, 1, 4, 5}, {32, 12, 10, 12}, {32, 6, 2, 3}});
- }
-
- TEST_F(ROCM, CHANWISE_CONVOLUTION_BACKWARD_FILTER) {
- Checker<ConvolutionBackwardFilter> checker(handle_rocm());
-
- checker.set_param(gconv_param({M, 0, 0, 1, 1}))
- .execs({{1, 1, 2, 2}, {1, 1, 1, 1}, {1, 1, 1, 2, 2}})
- .execs({{1, 1, 6, 6}, {1, 1, 5, 5}, {1, 1, 1, 2, 2}})
- .execs({{256, 1, 2, 2}, {256, 1, 1, 1}, {1, 1, 1, 2, 2}});
- checker.execs({{1, 2, 2, 2}, {1, 2, 1, 1}, {2, 1, 1, 2, 2}})
- .execs({{1, 2, 6, 6}, {1, 2, 5, 5}, {2, 1, 1, 2, 2}})
- .execs({{2, 2, 6, 6}, {2, 6, 5, 5}, {2, 3, 1, 2, 2}});
-
- checker.set_param(gconv_param({M, 1, 1, 1, 1}))
- .execs({{2, 2, 4, 4}, {2, 2, 5, 5}, {2, 1, 1, 2, 2}});
-
- checker.set_param(gconv_param({M, 0, 0, 1, 1}))
- .execs({{40960, 1, 1, 1}, {40960, 1, 1, 1}, {1, 1, 1, 1, 1}});
-
- checker.set_param(gconv_param({M, 2, 3, 2, 1}))
- .execs({{32, 12, 39, 8}, {32, 36, 20, 10}, {12, 3, 1, 4, 5}});
-
- // padding larger than kern
- checker.set_param(gconv_param({M, 20, 30, 4, 5}))
- .execs({{32, 6, 2, 3}, {32, 12, 10, 12}, {6, 2, 1, 4, 5}});
-
- // unused filter items
- checker.set_param(gconv_param({M, 2, 3, 2, 3}))
- .execs({{32, 6, 1, 1}, {32, 12, 1, 1}, {6, 2, 1, 5, 7}});
- }
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(ROCM, CHANWISE_CONVOLUTION_FORWARD_BENCH_CHECK) {
- auto handle = handle_rocm();
- auto handle_cpu = handle_naive();
- auto conv0 = handle->create_operator<ConvolutionForward>();
- auto conv1 = handle->create_operator<ConvolutionForward>();
- BenchmarkEnv<0, 1, 2> benv(handle, handle_cpu);
-
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t CHL_MUL, size_t FH,
- size_t FW, size_t PH, size_t PW) {
- benv.alloc(N, IC, IH, IW, CHL_MUL, FH, FW, PH, PW);
- benv.fill_src();
- benv.fill_flt();
- benv.exec(conv0.get(), conv1.get());
- benv.cmp_dst();
- };
-
- run(64, 60, 50, 50, 1, 3, 3, 1, 1);
- if (check_need_full_bench()) {
- run(64, 728, 18, 18, 2, 5, 5, 2, 2);
- run(64, 64, 150, 150, 2, 3, 3, 1, 1);
- run(1, 2048, 4, 4, 2, 3, 3, 1, 1);
- }
- }
-
- TEST_F(ROCM, CHANWISE_CONVOLUTION_BWD_DATA_BENCH_CHECK) {
- auto handle = handle_rocm();
- auto handle_cpu = handle_naive();
- auto conv0 = handle->create_operator<ConvolutionBackwardData>();
- auto conv1 = handle->create_operator<ConvolutionBackwardData>();
- BenchmarkEnv<1, 2, 0> benv(handle, handle_cpu);
-
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t CHL_MUL, size_t FH,
- size_t FW, size_t PH, size_t PW) {
- benv.alloc(N, IC, IH, IW, CHL_MUL, FH, FW, PH, PW);
- benv.fill_dst();
- benv.fill_flt();
- benv.exec(conv0.get(), conv1.get());
- benv.cmp_src();
- };
-
- run(64, 60, 50, 50, 1, 3, 3, 1, 1);
- if (check_need_full_bench()) {
- run(64, 728, 18, 18, 2, 5, 5, 2, 2);
- run(64, 64, 150, 150, 2, 3, 3, 1, 1);
- run(1, 2048, 4, 4, 2, 3, 3, 1, 1);
- }
- }
-
- TEST_F(ROCM, CHANWISE_CONVOLUTION_BWD_FILTER_BENCH_CHECK) {
- auto handle = handle_rocm();
- auto handle_cpu = handle_naive();
- auto conv0 = handle->create_operator<ConvolutionBackwardFilter>();
- auto conv1 = handle->create_operator<ConvolutionBackwardFilter>();
- BenchmarkEnv<0, 2, 1> benv(handle, handle_cpu);
-
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t CHL_MUL, size_t FH,
- size_t FW, size_t PH, size_t PW) {
- benv.alloc(N, IC, IH, IW, CHL_MUL, FH, FW, PH, PW);
- benv.fill_src();
- benv.fill_dst();
- benv.exec(conv0.get(), conv1.get());
- benv.cmp_flt();
- };
-
- run(64, 60, 50, 50, 1, 3, 3, 1, 1);
- if (check_need_full_bench()) {
- run(64, 728, 18, 18, 2, 5, 5, 2, 2);
- run(64, 64, 150, 150, 2, 3, 3, 1, 1);
- run(1, 2048, 4, 4, 2, 3, 3, 1, 1);
- }
- }
-
- TEST_F(ROCM, CHANWISE_CONVOLUTION_BENCH_ALL_ALGO_FWD) {
- // enable profiling
- OprProxy<ConvolutionForward> proxy(true);
- proxy.warmup_times = 1;
- proxy.exec_times = 10;
- Benchmarker<ConvolutionForward> checker(handle_rocm());
- checker.set_times(1);
- ConvolutionForward::Param param;
- param.sparse = ConvolutionForward::Param::Sparse::GROUP;
- checker.set_param(param);
-
- auto run = [&](size_t N, size_t C, size_t IH, size_t IW, size_t FH, size_t FW) {
- checker.set_proxy(proxy);
- checker.execs({{N, C, IH, IW}, {C, 1, 1, FH, FW}, {}});
- };
-
- run(128, 64, 90, 80, 3, 3);
- run(128, 90, 100, 100, 3, 5);
- run(128, 32, 62, 62, 5, 5);
- }
-
- TEST_F(ROCM, CHANWISE_CONVOLUTION_BENCH_ALL_ALGO_BWD_DATA) {
- // enable profiling
- OprProxy<ConvolutionBackwardData> proxy(true);
- proxy.warmup_times = 1;
- proxy.exec_times = 10;
- Benchmarker<ConvolutionBackwardData> checker(handle_rocm());
- checker.set_times(1);
- ConvolutionBackwardData::Param param;
- param.sparse = ConvolutionForward::Param::Sparse::GROUP;
- checker.set_param(param);
-
- auto run = [&](size_t N, size_t C, size_t IH, size_t IW, size_t FH, size_t FW) {
- checker.set_proxy(proxy);
- checker.execs(
- {{C, 1, 1, FH, FW}, {N, C, IH - FH + 1, IW - FW + 1}, {N, C, IH, IW}});
- };
-
- run(128, 64, 90, 80, 3, 3);
- run(128, 90, 100, 100, 3, 5);
- run(128, 32, 62, 62, 5, 5);
- }
-
- TEST_F(ROCM, CHANWISE_CONVOLUTION_BENCH_ALL_ALGO_BWD_FILTER) {
- // enable profiling
- OprProxy<ConvolutionBackwardFilter> proxy(true);
- proxy.warmup_times = 1;
- proxy.exec_times = 10;
- Benchmarker<ConvolutionBackwardFilter> checker(handle_rocm());
- checker.set_times(1);
- ConvolutionBackwardFilter::Param param;
- param.sparse = ConvolutionForward::Param::Sparse::GROUP;
- checker.set_param(param);
-
- auto run = [&](size_t N, size_t C, size_t IH, size_t IW, size_t FH, size_t FW) {
- checker.set_proxy(proxy);
- checker.execs(
- {{N, C, IH, IW}, {N, C, IH - FH + 1, IW - FW + 1}, {C, 1, 1, FH, FW}});
- };
-
- run(128, 64, 90, 80, 3, 3);
- run(128, 90, 100, 100, 3, 5);
- run(128, 32, 62, 62, 5, 5);
- }
-
- #endif
-
- // vim: syntax=cpp.doxygen
|