|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import numpy as np
-
- from ..functional import gelu, leaky_relu, prelu, relu, sigmoid, silu, softmax
- from ..tensor import Parameter
- from .module import Module
-
-
- class Softmax(Module):
- r"""Applies a softmax function. Softmax is defined as:
-
- .. math::
- \text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}
-
- It is applied to all elements along axis, and rescales elements so that
- they stay in the range `[0, 1]` and sum to 1.
-
- Args:
- axis: Along which axis softmax will be applied. By default,
- softmax will apply along the highest ranked axis.
-
- Examples:
-
- .. testcode::
-
- import numpy as np
- import megengine as mge
- import megengine.module as M
-
- data = mge.tensor(np.array([-2,-1,0,1,2]).astype(np.float32))
- softmax = M.Softmax()
- output = softmax(data)
- with np.printoptions(precision=6):
- print(output.numpy())
-
- Outputs:
-
- .. testoutput::
-
- [0.011656 0.031685 0.086129 0.234122 0.636409]
- """
-
- def __init__(self, axis=None, **kwargs):
- super().__init__(**kwargs)
- self.axis = axis
-
- def forward(self, inputs):
- return softmax(inputs, self.axis)
-
- def _module_info_string(self) -> str:
- return "axis={axis}".format(axis=self.axis)
-
-
- class Sigmoid(Module):
- r"""Applies the element-wise function:
-
- .. math::
-
- \text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)}
-
- Examples:
-
- .. testcode::
-
- import numpy as np
- import megengine as mge
- import megengine.module as M
-
- data = mge.tensor(np.array([-2,-1,0,1,2,]).astype(np.float32))
- sigmoid = M.Sigmoid()
- output = sigmoid(data)
- with np.printoptions(precision=6):
- print(output.numpy())
-
- Outputs:
-
- .. testoutput::
-
- [0.119203 0.268941 0.5 0.731059 0.880797]
- """
-
- def forward(self, inputs):
- return sigmoid(inputs)
-
-
- class SiLU(Module):
- r"""Applies the element-wise function:
-
- .. math::
-
- \text{SiLU}(x) = \frac{x}{1 + \exp(-x)}
-
- Examples:
-
- .. testcode::
-
- import numpy as np
- import megengine as mge
- import megengine.module as M
-
- data = mge.tensor(np.array([-2,-1,0,1,2,]).astype(np.float32))
- silu = M.SiLU()
- output = silu(data)
- with np.printoptions(precision=6):
- print(output.numpy())
-
- Outputs:
-
- .. testoutput::
-
- [-0.238406 -0.268941 0. 0.731059 1.761594]
- """
-
- def forward(self, inputs):
- return silu(inputs)
-
-
- class GELU(Module):
- r"""Applies the element-wise function:
-
- .. math::
- \text{GELU}(x) = x\Phi(x)
-
- where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.
-
- Examples:
-
- .. testcode::
-
- import numpy as np
- import megengine as mge
- import megengine.module as M
-
- data = mge.tensor(np.array([-2,-1,0,1,2,]).astype(np.float32))
- gelu = M.GELU()
- output = gelu(data)
- with np.printoptions(precision=4):
- print(output.numpy())
-
- Outputs:
-
- .. testoutput::
-
- [-0.0455 -0.1587 0. 0.8413 1.9545]
- """
-
- def forward(self, inputs):
- return gelu(inputs)
-
-
- class ReLU(Module):
- r"""Applies the element-wise function:
-
- .. math::
- \text{ReLU}(x) = \max(x, 0)
-
- Examples:
-
- .. testcode::
-
- import numpy as np
- import megengine as mge
- import megengine.module as M
- data = mge.tensor(np.array([-2,-1,0,1,2,]).astype(np.float32))
- relu = M.ReLU()
- output = relu(data)
- with np.printoptions(precision=6):
- print(output.numpy())
-
- Outputs:
-
- .. testoutput::
-
- [0. 0. 0. 1. 2.]
- """
-
- def forward(self, x):
- return relu(x)
-
-
- class PReLU(Module):
- r"""Applies the element-wise function:
-
- .. math::
- \text{PReLU}(x) = \max(0,x) + a * \min(0,x)
-
- or
-
- .. math::
- \text{PReLU}(x) =
- \begin{cases}
- x, & \text{ if } x \geq 0 \\
- ax, & \text{ otherwise }
- \end{cases}
-
- Here :math:`a` is a learnable parameter. When called without arguments, `PReLU()` uses
- a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`, each input channle will has it's own :math:`a`.
-
- Args:
- num_parameters: number of :math:`a` to learn, there is only two
- values are legitimate: 1, or the number of channels at input. Default: 1
- init: the initial value of :math:`a`. Default: 0.25
-
- Examples:
-
- .. testcode::
-
- import numpy as np
- import megengine as mge
- import megengine.module as M
- data = mge.tensor(np.array([-1.2, -3.7, 2.7]).astype(np.float32))
- prelu = M.PReLU()
- output = prelu(data)
- print(output.numpy())
-
- Outputs:
-
- .. testoutput::
-
- [-0.3 -0.925 2.7 ]
- """
-
- def __init__(self, num_parameters: int = 1, init: float = 0.25, **kwargs):
- super().__init__(**kwargs)
- self.num_parameters = num_parameters
- if num_parameters > 1:
- # Assume format is NCHW
- self.weight = Parameter(
- data=np.full((1, num_parameters, 1, 1), init, dtype=np.float32)
- )
- else:
- self.weight = Parameter(data=[init])
-
- def forward(self, inputs):
- assert self.weight.shape == (1,) or self.weight.shape == (
- 1,
- int(inputs.shape[1]),
- 1,
- 1,
- ), "invalid weight's shape"
- return prelu(inputs, self.weight)
-
-
- class LeakyReLU(Module):
- r"""Applies the element-wise function:
-
- .. math::
- \text{LeakyReLU}(x) = \max(0,x) + negative\_slope \times \min(0,x)
-
- or
-
- .. math::
- \text{LeakyReLU}(x) =
- \begin{cases}
- x, & \text{ if } x \geq 0 \\
- negative\_slope \times x, & \text{ otherwise }
- \end{cases}
-
- Examples:
-
- .. testcode::
-
- import numpy as np
- import megengine as mge
- import megengine.module as M
- data = mge.tensor(np.array([-8, -12, 6, 10]).astype(np.float32))
-
- leakyrelu = M.LeakyReLU(0.01)
- output = leakyrelu(data)
- print(output.numpy())
-
- Outputs:
-
- .. testoutput::
-
- [-0.08 -0.12 6. 10. ]
- """
-
- def __init__(self, negative_slope: float = 0.01, **kwargs):
- super().__init__(**kwargs)
- self.negative_slope = negative_slope
-
- def forward(self, inputs):
- return leaky_relu(inputs, self.negative_slope)
|