|
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import abc
- import weakref
- from typing import Any, Dict, List, Tuple, Type
-
- import numpy
-
- from ..core._imperative_rt.core2 import Tensor as RawTensor
- from ..module import Module
- from ..tensor import Tensor
-
-
- class Node:
- r"""``Node`` represents the variables (Tensor/Module/other python object) used in Module's forward method.
- They are inputs/outputs of Expr(the operations on variables).
-
- Args:
- expr: the Expr which produces the node
- name: the name of the node
- """
-
- expr = None
- __total_id = 0
- _id = None
- _top_graph = None # type: weakref.ReferenceType
- _name = None
- _orig_name = None
- _format_spec = ""
-
- def __init__(self, expr: "Expr", name: str = None, orig_name: str = None):
- self.expr = expr
- self.users = [] # List[Expr]
- self._id = Node.__total_id
- Node.__total_id += 1
- self._name = name
- self._orig_name = orig_name
- self.actual_node = [] # type: List[Node]
-
- def __repr__(self):
- format_spec = Node._format_spec
- return self.__format__(format_spec)
-
- def __format__(self, format_spec: str) -> str:
- if not format_spec:
- format_spec = Node._format_spec
- name = self._name
- if name is None:
- name = ""
- if format_spec in ["i", "p", "ip", "pi"]:
- if "p" in format_spec:
- graph = self.top_graph
- prefix_name = ""
- if graph is not None:
- prefix_name = graph._name
- if graph._prefix_name:
- prefix_name = "{}_{}".format(
- graph._prefix_name, prefix_name.lstrip("_")
- )
- if name:
- name = "_" + name.lstrip("_")
- name = "{}{}".format(prefix_name, name)
- if "i" in format_spec:
- if name:
- name = "_" + name.lstrip("_")
- name = "%{}{}".format(self._id, name)
- return name
- else:
- return name if name else ("%d" % self._id)
-
- @property
- def top_graph(self):
- if self._top_graph:
- return self._top_graph()
- return None
-
- @classmethod
- def set_format_spec(cls, str):
- old_format_spec = cls._format_spec
- cls._format_spec = str
- return old_format_spec
-
- @classmethod
- def get_total_id(cls):
- return cls.__total_id
-
- @classmethod
- def set_total_id(cls, id: int = 0):
- assert isinstance(id, int)
- cls.__total_id = id
-
-
- class ModuleNode(Node):
- r"""``ModuleNode`` represents the Module objects."""
-
- module_type = Module # type: Type[Module]
- _owner = None # type: weakref.ReferenceType
-
- def __init__(self, expr: "Expr", name: str = None, orig_name: str = None):
- super().__init__(expr, name, orig_name)
-
- def __getstate__(self):
- return {
- "expr": self.expr,
- "users": self.users,
- "_id": self._id,
- "_name": self._name,
- "_orig_name": self._orig_name,
- "module_type": self.module_type,
- }
-
- @property
- def owner(self):
- if self._owner:
- return self._owner()
- return None
-
-
- class TensorNode(Node):
- r"""``TensorNode`` represents the Tensor objects."""
-
- _shape = None # type: Tuple[int]
- _dtype = None # type: numpy.dtype
- _qparams = None
- _device = None
- _value = None # type: Tensor
-
- def __getstate__(self):
- return {
- "expr": self.expr,
- "users": self.users,
- "_id": self._id,
- "_qparams": self._qparams,
- "_shape": self._shape,
- "_dtype": self._dtype,
- "_device": self._device,
- "_name": self._name,
- "_orig_name": self._orig_name,
- }
-
- @property
- def shape(self):
- return self._shape
-
- @shape.setter
- def shape(self, shape):
- self._shape = shape
-
- @property
- def dtype(self):
- return self._dtype
-
- @dtype.setter
- def dtype(self, dtype):
- self._dtype = dtype
-
- @property
- def device(self):
- return self._device
-
- @device.setter
- def device(self, device):
- self._device = device
-
- @property
- def qparams(self):
- return self._qparams
-
- @qparams.setter
- def qparams(self, qparams):
- self._qparams = qparams
-
- @property
- def value(self):
- return self._value
-
- @value.setter
- def value(self, value):
- if isinstance(value, RawTensor) and NodeMixin.get(value, None) is not None:
- setattr(value, "_NodeMixin__node", None)
- self._value = value
-
-
- class NodeMixin(abc.ABC):
- __node = None
-
- @abc.abstractmethod
- def _record_wrapped_nodes(self, node):
- # record the nodes which had been bound to this NodeMixin
- pass
-
- @classmethod
- def _record_tensornode_property(cls, node, value):
- assert isinstance(node, TensorNode)
- assert isinstance(value, RawTensor)
- if isinstance(value, RawTensor):
- node._dtype = value.dtype
- node._shape = (
- value._tuple_shape if isinstance(value, Tensor) else value.shape
- )
- node._device = value.device
- if hasattr(value, "_qparams") and value._qparams is not None:
- node._qparams = value.qparams
-
- @classmethod
- def wrap(cls, value, node):
- if isinstance(value, (NodeMixin, RawTensor)):
- if isinstance(node, Node):
- if isinstance(value, RawTensor):
- cls._record_tensornode_property(node, value)
- if isinstance(value, NodeMixin):
- value._record_wrapped_nodes(node)
- setattr(value, "_NodeMixin__node", node)
- else:
- assert callable(node)
- n = node()
- assert isinstance(n, Node)
- if isinstance(value, RawTensor):
- cls._record_tensornode_property(n, value)
- if isinstance(value, NodeMixin):
- value._record_wrapped_nodes(n)
- setattr(value, "_NodeMixin__node", n)
-
- @classmethod
- def wrap_safe(cls, value, node):
- assert isinstance(value, (NodeMixin, RawTensor))
- if isinstance(value, RawTensor):
- cls._record_tensornode_property(node, value)
- setattr(value, "_NodeMixin__node", node)
- if isinstance(value, NodeMixin):
- value._record_wrapped_nodes(node)
-
- @classmethod
- def get(cls, value, *default):
- return getattr(value, "_NodeMixin__node", *default)
-
- @classmethod
- def get_wrapped_type(cls, value):
- if isinstance(value, RawTensor):
- return TensorNode
- if isinstance(value, (Module, NodeMixin)):
- return ModuleNode
- return Node
|