|
- /**
- * \file dnn/test/arm_common/conv_bias.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "megdnn/dtype.h"
- #include "test/arm_common/fixture.h"
-
- #include "megdnn/opr_param_defs.h"
- #include "megdnn/oprs.h"
- #include "src/fallback/conv_bias/common.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/conv_bias.h"
- #include "test/common/rng.h"
- #include "test/common/tensor.h"
- #include "test/common/workspace_wrapper.h"
-
- using namespace megdnn;
- using namespace test;
- using namespace conv_bias;
-
- //! TODO this algo current does not support multithread
- TEST_F(ARM_COMMON, CONVBIAS_INT8_INT8_INT16_STRIDE2F2) {
- checker_conv_bias_int8x8x16(get_conv_bias_args({2}, 2, true, true, true),
- handle(), "I8816STRD2F2");
- }
-
- TEST_F(ARM_COMMON, CONV_BIAS_MATMUL) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_quantized_args();
- Checker<ConvBiasForward> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>("S8MATMUL"));
- #if MEGDNN_ARMV7
- checker.set_epsilon(1);
- #endif
- UniformIntRNG rng{-50, 50};
- for (auto&& arg : args) {
- if (arg.bias.ndim == 4 && arg.bias[2] != 1 && arg.bias[3] != 1)
- continue;
- checker.set_dtype(0, dtype::QuantizedS8(0.41113496f))
- .set_dtype(1, dtype::QuantizedS8(0.01887994f))
- .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f))
- .set_dtype(4, dtype::QuantizedS8(0.49550694f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- #define CONV_BIAS_MATMUL_QU8_MODE(MODE) \
- using namespace conv_bias; \
- std::vector<TestArg> args = get_quantized_args_with_nlmode(MODE); \
- Checker<ConvBiasForward> checker(handle()); \
- checker.set_before_exec_callback( \
- conv_bias::ConvBiasAlgoChecker<ConvBias>("QU8MATMUL")); \
- UniformIntRNG rng{0, 127}; \
- for (auto&& arg : args) { \
- if (arg.bias.ndim == 4 && arg.bias[2] != 1 && arg.bias[3] != 1) \
- continue; \
- checker.set_dtype(0, dtype::Quantized8Asymm( \
- 2.5f, static_cast<uint8_t>(127))) \
- .set_dtype(1, dtype::Quantized8Asymm( \
- 2.7f, static_cast<uint8_t>(126))) \
- .set_dtype(2, dtype::QuantizedS32(6.75f)) \
- .set_dtype(4, dtype::Quantized8Asymm( \
- 60.25f, static_cast<uint8_t>(125))) \
- .set_rng(0, &rng) \
- .set_rng(1, &rng) \
- .set_rng(2, &rng) \
- .set_param(arg.param) \
- .execs({arg.src, arg.filter, arg.bias, {}, {}}); \
- }
-
- #define MODE_STR(mode) param::ConvBias::NonlineMode::mode
-
- #define CB_TEST(MODE) \
- TEST_F(ARM_COMMON, CONV_BIAS_MATMUL_QU8_##MODE) { \
- CONV_BIAS_MATMUL_QU8_MODE(MODE_STR(MODE)); \
- }
-
- CB_TEST(IDENTITY);
- CB_TEST(RELU);
- CB_TEST(H_SWISH);
-
- #undef MODE_STR
- #undef CB_TEST
- #undef CONV_BIAS_MATMUL_QU8_MODE
-
- #if MEGDNN_WITH_BENCHMARK
-
- static void benchmark_convbias(Handle* handle, bool is_fp32 = false) {
- constexpr size_t RUNS = 30;
-
- Benchmarker<ConvBias> benchmarker_int(handle);
- benchmarker_int.set_times(RUNS)
- .set_dtype(0, dtype::QuantizedS8(2.5))
- .set_dtype(1, dtype::QuantizedS8(2.5))
- .set_dtype(2, dtype::QuantizedS32(6.25))
- .set_dtype(4, dtype::QuantizedS8(60.25))
- .set_display(false);
- benchmarker_int.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16:384"));
-
- Benchmarker<ConvBias> benchmarker_float(handle);
- benchmarker_float.set_display(false).set_times(RUNS);
- benchmarker_float.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- "IM2COLMATMUL:AARCH64_F32K8X12X1:192"));
-
- Benchmarker<ConvBias> benchmarker_int_nchw44(handle);
- if (is_fp32) {
- benchmarker_int_nchw44.set_times(RUNS)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_dtype(4, dtype::Float32())
- .set_display(false);
- } else {
- benchmarker_int_nchw44.set_times(RUNS)
- .set_dtype(0, dtype::QuantizedS8(2.5))
- .set_dtype(1, dtype::QuantizedS8(2.5))
- .set_dtype(2, dtype::QuantizedS32(6.25))
- .set_dtype(4, dtype::QuantizedS8(60.25))
- .set_display(false);
- }
- benchmarker_int_nchw44.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(".+"));
-
- auto run = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t stride, bool input_nchw = false) {
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.stride_h = stride;
- param.stride_w = stride;
-
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
- auto OH = (H + 2 * param.pad_h - FS) /
- static_cast<size_t>(param.stride_h) +
- 1;
- auto OW = (W + 2 * param.pad_w - FS) /
- static_cast<size_t>(param.stride_w) +
- 1;
- TensorShape src({N, IC, H, W}), filter({OC, IC, FS, FS}),
- bias({1, OC, 1, 1}), dst({N, OC, OH, OW});
- param.format = param::ConvBias::Format::NCHW;
- auto int_used = benchmarker_int.set_param(param).exec(
- {src, filter, bias, {}, dst}) /
- RUNS;
- auto float_used = benchmarker_float.set_param(param).exec(
- {src, filter, bias, {}, dst}) /
- RUNS;
- param.format = param::ConvBias::Format::NCHW44;
- src = {N, IC / 4, H, W, 4};
- filter = {OC / 4, IC / 4, FS, FS, 4, 4};
- if (input_nchw) {
- src = {N, IC, H, W};
- filter = {OC / 4, FS, FS, IC, 4};
- }
-
- bias = {1, OC / 4, 1, 1, 4};
- dst = {N, OC / 4, OH, OW, 4};
- auto int_nchw44_used = benchmarker_int_nchw44.set_param(param).exec(
- {src, filter, bias, {}, dst}) /
- RUNS;
- float computations = IC * (FS * FS) * dst.total_nr_elems() * 2 * 1e-6;
- printf("run: %s %s %s->%s \n", src.to_string().c_str(),
- filter.to_string().c_str(), bias.to_string().c_str(),
- dst.to_string().c_str());
- printf("float: %f ms %f Gflops, ", float_used,
- computations / float_used);
- printf("int_nchw: %f ms %f Gflops, ", int_used,
- computations / int_used);
- auto speed_up = int_used / int_nchw44_used;
- if (is_fp32) {
- speed_up = float_used / int_nchw44_used;
- printf("fp32_nchw44: %f ms %f Gflops %f speedup, ", int_nchw44_used,
- computations / int_nchw44_used, speed_up);
- } else {
- printf("int_nchw44: %f ms %f Gflops %f speedup, ", int_nchw44_used,
- computations / int_nchw44_used, speed_up);
- }
- printf("\n");
- };
-
- if (is_fp32) {
- run(1, 1, 4, 112, 112, 2, 2, true);
- run(1, 3, 32, 224, 224, 3, 2, true);
- run(1, 3, 64, 224, 224, 7, 2, true);
-
- run(1, 64, 128, 56, 56, 3, 2, false);
- run(1, 128, 256, 28, 28, 3, 2, false);
- run(1, 256, 512, 14, 14, 3, 2, false);
-
- run(1, 64, 128, 56, 56, 7, 2, false);
- run(1, 128, 256, 28, 28, 7, 2, false);
- run(1, 256, 512, 14, 14, 7, 2, false);
-
- run(1, 64, 64, 48, 48, 3, 2, false);
- } else {
- for (size_t stride : {1, 2}) {
- printf("stride %zu\n", stride);
- for (size_t filter_size : {2, 3, 5, 7}) {
- for (size_t img_size : {32}) {
- for (size_t channel : {8, 16, 32, 64, 128, 256}) {
- run(1, channel, channel, img_size, img_size,
- filter_size, stride, false);
- }
- }
- }
- }
- }
- }
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_NCHW44) {
- benchmark_convbias(handle(), true);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, BENCHMARK_CONVBIAS_NCHW44) {
- benchmark_convbias(handle(), true);
- }
-
- #endif
- TEST_F(ARM_COMMON, CONV_BIAS_MATMUL_QS8) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_quantized_args();
- Checker<ConvBiasForward> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>("S8MATMUL"));
-
- #if MEGDNN_ARMV7
- checker.set_epsilon(1);
- #endif
- UniformIntRNG rng{0, 255};
- for (auto&& arg : args) {
- if (arg.bias.ndim == 4 && arg.bias[2] != 1 && arg.bias[3] != 1)
- continue;
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.7f))
- .set_dtype(2, dtype::QuantizedS32(6.75f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- #if MEGDNN_ARMV7
- TEST_F(ARM_COMMON, CONV_BIAS_RESCALE_OP) {
- using namespace conv_bias;
-
- Checker<ConvBias> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("S8MATMUL"));
- checker.set_epsilon(1).set_max_avg_error(1e-2).set_max_avg_biased_error(
- 1e-3);
- UniformIntRNG rng{-128, 127};
- checker.set_dtype(0, dtype::QuantizedS8(0.41113496f))
- .set_dtype(1, dtype::QuantizedS8(0.01887994f))
- .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f))
- .set_dtype(4, dtype::QuantizedS8(0.49550694f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = 0;
- param.pad_w = 0;
- param.nonlineMode = NonlineMode::IDENTITY;
-
- //! Unary op
- checker.set_param(param).exec({TensorShape{2, 1, 128, 128},
- TensorShape{16, 1, 2, 2},
- TensorShape{},
- TensorShape{},
- {}});
- //! Binary op
- checker.set_param(param).exec({TensorShape{2, 1, 128, 128},
- TensorShape{16, 1, 2, 2},
- TensorShape{1, 16, 1, 1},
- TensorShape{},
- {}});
- }
- #endif
-
- #if MEGDNN_WITH_BENCHMARK
-
- void benchmark_im2col(const char* algo_name, const char* im2col_name,
- Handle* handle, size_t kernel, size_t pack_size = 1) {
- auto&& args = get_winograd_benchmark_args(kernel, pack_size);
- using namespace conv_bias;
- constexpr size_t RUN = 10;
- Benchmarker<ConvBias> benchmark(handle);
- benchmark.set_display(false);
- benchmark.set_times(RUN);
-
- Benchmarker<ConvBias> benchmark_im2col(handle);
- benchmark_im2col.set_display(false);
- benchmark_im2col.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Float32()},
- {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- benchmark.set_param(arg.param);
- auto used = algo_benchmark<ConvBias>(benchmark,
- {arg.src, arg.filter, {}, {}, {}},
- algo_name) /
- RUN;
- benchmark_im2col.set_param(arg.param);
- auto used_im2col =
- algo_benchmark<ConvBias>(benchmark_im2col,
- {arg.src, arg.filter, {}, {}, {}},
- im2col_name) /
- RUN;
-
- printf("%s %s: normal: %f ms %f Gflops im2col: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used, computations / used, used_im2col,
- computations / used_im2col, used / used_im2col);
- }
- }
-
- void benchmark_im2col_single_algo(const char* im2col_name, Handle* handle,
- size_t kernel, size_t pack_size = 1) {
- std::vector<conv_bias::TestArg> args;
- auto pack = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p) {
- if (ic % pack_size != 0 || oc % pack_size != 0)
- return;
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
-
- args.push_back(conv_bias::TestArg{param,
- TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- {1, oc, 1, 1}});
- };
- pack(1, 64, 100, 100, kernel, 1);
- pack(8, 64, 100, 100, kernel, 1);
- pack(16, 64, 100, 100, kernel, 1);
- pack(32, 64, 100, 100, kernel, 1);
- pack(64, 64, 100, 100, kernel, 1);
- pack(128, 64, 100, 100, kernel, 1);
- pack(256, 64, 100, 100, kernel, 1);
- pack(512, 64, 100, 100, kernel, 1);
- pack(1024, 64, 100, 100, kernel, 1);
- pack(1, 64, 10, 10, kernel, 1);
- pack(8, 64, 10, 10, kernel, 1);
- pack(16, 64, 10, 10, kernel, 1);
- pack(32, 64, 10, 10, kernel, 1);
- pack(64, 64, 10, 10, kernel, 1);
- pack(128, 64, 10, 10, kernel, 1);
- pack(256, 64, 10, 10, kernel, 1);
- pack(512, 64, 10, 10, kernel, 1);
- pack(1024, 64, 10, 10, kernel, 1);
- pack(1, 16, 10, 10, kernel, 1);
- pack(8, 16, 10, 10, kernel, 1);
- pack(16, 16, 10, 10, kernel, 1);
- pack(32, 16, 10, 10, kernel, 1);
- pack(64, 16, 10, 10, kernel, 1);
- pack(128, 16, 10, 10, kernel, 1);
- pack(256, 16, 10, 10, kernel, 1);
- pack(512, 16, 10, 10, kernel, 1);
- pack(1024, 16, 10, 10, kernel, 1);
-
- using namespace conv_bias;
- constexpr size_t RUN = 20;
-
- Benchmarker<ConvBias> benchmark_im2col(handle);
- benchmark_im2col.set_display(false);
- benchmark_im2col.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Float32()},
- {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- benchmark_im2col.set_param(arg.param);
- auto used_im2col =
- algo_benchmark<ConvBias>(benchmark_im2col,
- {arg.src, arg.filter, {}, {}, {}},
- im2col_name) /
- RUN;
-
- printf("%s %s: im2col: %f ms %f GFlops \n", arg.src.to_string().c_str(),
- arg.filter.to_string().c_str(), used_im2col,
- computations / used_im2col);
- }
- }
-
- void BENCHMARK_IM2COL_NCHW44_VS_NCHW(const char* algo_name,
- const char* im2col_name, Handle* handle,
- size_t kernel, size_t pack_size = 1) {
- auto&& args = get_winograd_benchmark_args(kernel, pack_size);
- using namespace conv_bias;
- constexpr size_t RUN = 10;
- Benchmarker<ConvBias> benchmark(handle);
- benchmark.set_display(false);
- benchmark.set_times(RUN);
- benchmark.set_dtype(0, dtype::Int8());
- benchmark.set_dtype(1, dtype::Int8());
- benchmark.set_dtype(2, dtype::Int32());
- benchmark.set_dtype(4, dtype::Int32());
-
- Benchmarker<ConvBias> benchmark_im2col(handle);
- benchmark_im2col.set_display(false);
- benchmark_im2col.set_times(RUN);
- benchmark_im2col.set_dtype(0, dtype::Int8());
- benchmark_im2col.set_dtype(1, dtype::Int8());
- benchmark_im2col.set_dtype(2, dtype::Int32());
- benchmark_im2col.set_dtype(4, dtype::Int32());
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Float32()},
- {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
- std::vector<conv_bias::TestArg> nchw44param;
-
- benchmark.set_param(arg.param);
- auto used = algo_benchmark<ConvBias>(benchmark,
- {arg.src, arg.filter, {}, {}, {}},
- algo_name) /
- RUN;
-
- arg.param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- arg.param.format = param::ConvBias::Format::NCHW44;
- benchmark_im2col.set_param(arg.param);
- nchw44param.push_back(conv_bias::TestArg{
- arg.param,
- TensorShape{arg.src.shape[0], arg.src.shape[1] / 4, arg.src[2],
- arg.src.shape[3], 4},
- TensorShape{arg.filter.shape[0] / 4, arg.filter.shape[1] / 4,
- kernel, kernel, 4, 4},
- TensorShape{}});
-
- auto used_im2col =
- algo_benchmark<ConvBias>(
- benchmark_im2col,
- {nchw44param[0].src, nchw44param[0].filter, {}, {}, {}},
- im2col_name) /
- RUN;
- printf("nchw44 shape src %s filter %s\n",
- nchw44param[0].src.to_string().c_str(),
- nchw44param[0].filter.to_string().c_str());
- printf("%s %s: normal: %f ms %f Gflops im2col: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used, computations / used, used_im2col,
- computations / used_im2col, used / used_im2col);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_NCHW_VS_NCHW44_INT8x8x32) {
- printf("=========================compare "
- "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16, "
- "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16 \n");
- BENCHMARK_IM2COL_NCHW44_VS_NCHW("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16",
- "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16",
- handle(), 3, 4);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_GROUP_CONVBIAS_QUANTIZED) {
- constexpr size_t RUNS = 50;
- param::ConvBias param;
- param.sparse = param::ConvBias::Sparse::GROUP;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- Benchmarker<ConvBias> benchmarker_int(handle());
- benchmarker_int.set_times(RUNS)
- .set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(40.25f))
- .set_display(false);
- Benchmarker<ConvBias> benchmarker_float(handle());
- benchmarker_float.set_display(false).set_times(RUNS);
-
- auto run = [&](size_t N, size_t GROUP, size_t IC, size_t OC, size_t H,
- size_t W, size_t FS, size_t STRD) {
- megdnn_assert(IC % GROUP == 0 && OC % GROUP == 0);
- TensorShape src({N, IC, H, W}),
- filter({GROUP, OC / GROUP, IC / GROUP, FS, FS}),
- bias({1, OC, 1, 1}), dst({N, OC, H / STRD, W / STRD});
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
- param.stride_h = STRD;
- param.stride_w = STRD;
- auto int_used = benchmarker_int.set_param(param).exec(
- {src, filter, bias, {}, dst}) /
- RUNS;
- auto float_used = benchmarker_float.set_param(param).exec(
- {src, filter, bias, {}, dst}) /
- RUNS;
- float computations = (IC / GROUP * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- printf("run: %s %s %s->%s \nfloat: %f ms %f Gflops int: %f ms "
- "%f Gflops speedup: %f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- bias.to_string().c_str(), dst.to_string().c_str(), float_used,
- computations / float_used, int_used, computations / int_used,
- float_used / int_used);
- };
-
- run(1, 1, 28, 28, 28, 28, 3, 1);
- run(1, 68, 68, 68, 14, 14, 3, 2);
- run(1, 96, 96, 96, 14, 14, 3, 2);
- run(1, 100, 100, 100, 7, 7, 3, 1);
- }
- #endif
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_MATMUL) {
- constexpr size_t RUNS = 10;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- Benchmarker<ConvBias> benchmarker(handle()), benchmarker_fused(handle());
- benchmarker.set_times(RUNS)
- .set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(40.25f))
- .set_display(false);
- benchmarker_fused.set_times(RUNS)
- .set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(40.25f))
- .set_display(false);
- benchmarker_fused.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>("S8MATMUL"));
-
- auto run = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS) {
- TensorShape src({N, IC, H, W}), filter({OC, IC, FS, FS}),
- bias({1, OC, 1, 1}), dst({N, OC, H, W});
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
- auto default_used = benchmarker.set_param(param).exec(
- {src, filter, bias, {}, dst}) /
- RUNS;
- auto fused_used = benchmarker_fused.set_param(param).exec(
- {src, filter, bias, {}, dst}) /
- RUNS;
- float computations =
- IC * (FS * FS + 1) * dst.total_nr_elems() * 2 * 1e-6;
- printf("run: %s %s %s->%s \ndefault: %f ms %f Gflops fused: %f ms "
- "%f Gflops speedup: %f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- bias.to_string().c_str(), dst.to_string().c_str(), default_used,
- computations / default_used, fused_used,
- computations / fused_used, default_used / fused_used);
- };
-
- run(1, 128, 128, 32, 32, 3);
-
- for (size_t IC : {36, 48}) {
- for (size_t OC : {36, 48, 64}) {
- for (size_t size : {56, 128, 256}) {
- for (size_t FS : {1, 3, 5}) {
- run(1, IC, OC, size, size, FS);
- }
- }
- }
- }
- }
- #endif
- #if MEGDNN_WITH_BENCHMARK
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F23) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32:1:2", handle(), 3);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32_:1:2", handle(), 3);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F23_4x4) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32_MK4_4x16:4:2", handle(), 3, 4);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32_MK4_4x8:4:2", handle(), 3, 4);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F63) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32K8X12X1:1:6", handle(), 3);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32:1:6", handle(), 3);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F63_4x4) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32_MK4_4x16:4:6", handle(), 3, 4);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32_MK4_4x8:4:6", handle(), 3, 4);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F54) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32K8X12X1:1:5", handle(), 4);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32:1:5", handle(), 4);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F45) {
- #if MEGDNN_AARCH64
- benchmark_winograd("WINOGRAD:AARCH64_F32K8X12X1:1:4", handle(), 5);
- #else
- benchmark_winograd("WINOGRAD:ARMV7_F32:1:4", handle(), 5);
- #endif
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F23) {
- #if MEGDNN_AARCH64
- benchmark_winograd_fp16("WINOGRAD:AARCH64_F32_MK4_4x16:4:2",
- "WINOGRAD:AARCH64_F16_K8X24X1:1:6", handle(), 3, 4);
- #else
- benchmark_winograd_fp16("WINOGRAD:ARMV7_F32:1:2",
- "WINOGRAD:AARCH32_F16_K4X16X1:1:2", handle(), 3);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F45) {
- #if MEGDNN_AARCH64
- benchmark_winograd_fp16("WINOGRAD:AARCH64_F32K8X12X1:1:4",
- "WINOGRAD:AARCH64_F16_K8X24X1:1:4", handle(), 5);
- #else
- benchmark_winograd_fp16("WINOGRAD:ARMV7_F32:1:4",
- "WINOGRAD:AARCH32_F16_K4X16X1:1:4", handle(), 5);
- #endif
- }
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F63) {
- #if MEGDNN_AARCH64
- benchmark_winograd_fp16("WINOGRAD:AARCH64_F32K8X12X1:1:6",
- "WINOGRAD:AARCH64_F16_K8X24X1:1:6", handle(), 3);
- #else
- benchmark_winograd_fp16("WINOGRAD:ARMV7_F32:1:6",
- "WINOGRAD:AARCH32_F16_K4X16X1:1:6", handle(), 3);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F23_8x8) {
- #if MEGDNN_AARCH64
- benchmark_winograd_fp16("WINOGRAD:AARCH64_F32_MK4_4x16:4:2",
- "WINOGRAD:AARCH64_F16_MK8_8X8:8:2", handle(), 3, 8);
- #else
- benchmark_winograd_fp16("WINOGRAD:ARMV7_F32_MK4_4x8:4:2",
- "WINOGRAD:AARCH32_F16_MK8_4X8:8:2", handle(), 3, 8);
- #endif
- }
- #endif
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F23_8x8) {
- auto benchmark_winograd_quantized = [](const char* algo_name_fp32,
- const char* algo_name_quantized,
- Handle* handle, size_t kernel) {
- auto&& args = get_winograd_benchmark_args(kernel);
- using namespace conv_bias;
- constexpr size_t RUN = 10;
- Benchmarker<ConvBias> benchmark(handle);
- benchmark.set_display(false);
- benchmark.set_times(RUN);
-
- Benchmarker<ConvBias> benchmark_winograd(handle);
- benchmark_winograd.set_display(false).set_times(RUN);
- benchmark_winograd.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Float32()},
- {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- benchmark.set_param(arg.param);
- auto used = algo_benchmark<ConvBias>(
- benchmark, {arg.src, arg.filter, {}, {}, {}},
- algo_name_fp32) /
- RUN;
-
- benchmark_winograd.set_param(arg.param);
- auto used_winograd =
- algo_benchmark<ConvBias>(benchmark_winograd,
- {arg.src, arg.filter, {}, {}, {}},
- algo_name_quantized) /
- RUN;
-
- printf("%s %s: normal: %f ms %f Gflops winograd: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used, computations / used, used_winograd,
- computations / used_winograd, used / used_winograd);
- }
- };
-
- #if MEGDNN_AARCH64
- benchmark_winograd_quantized("WINOGRAD:AARCH64_F32_MK4_4x16:4:2",
- "WINOGRAD:AARCH64_INT16X16X32_MK8_8X8:8:2",
- handle(), 3);
- #else
- benchmark_winograd_quantized("WINOGRAD:ARMV7_F32_MK4_4x8:4:2",
- "WINOGRAD:ARMV7_INT16X16X32_MK8_4X8:8:2",
- handle(), 3);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE1) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("S8STRD1"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Int8()},
- {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used0, computations / used0, used1, computations / used1,
- used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE2) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("S8STRD2"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Int8()},
- {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used0, computations / used0, used1, computations / used1,
- used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE1) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0
- .set_dtype(0,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4,
- dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("QU8STRD1"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1
- .set_dtype(0,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4,
- dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Int8()},
- {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used0, computations / used0, used1, computations / used1,
- used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE2) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0
- .set_dtype(0,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4,
- dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("QU8STRD2"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1
- .set_dtype(0,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4,
- dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Int8()},
- {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used0, computations / used0, used1, computations / used1,
- used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QINT8_STRIDE1_NCHW44) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = 1;
- param.pad_w = 1;
- param.nonlineMode = NonlineMode::RELU;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::QuantizedS8(0.2f))
- .set_dtype(1, dtype::QuantizedS8(0.2f))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::QuantizedS8(1.4f));
- benchmark0.set_display(false);
- benchmark0.set_param(param);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "S8STRD1_LARGE_GROUP"));
-
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = param;
-
- param.format = param::ConvBias::Format::NCHW44;
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::QuantizedS8(0.2f))
- .set_dtype(1, dtype::QuantizedS8(0.2f))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::QuantizedS8(1.4f));
- benchmark1.set_display(false);
- benchmark1.set_param(param);
- benchmark1.set_times(RUN);
- benchmark1.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "S8_CHAN_WISE_STRD1_NCHW44"));
- auto run = [&](size_t group, size_t w, size_t h, size_t kernel) {
- TensorLayout dst_layout;
- opr->deduce_layout({{1, group * 4, h, w}, dtype::Int8()},
- {{group * 4, 1, 1, kernel, kernel}, dtype::Int8()},
- {{1, group * 4, 1, 1}, dtype::Int32()}, {},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * kernel * kernel *
- 2.0 / (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.exec({{1, group * 4, h, w},
- {group * 4, 1, 1, kernel, kernel},
- {1, group * 4, 1, 1},
- {},
- {}}) /
- RUN;
- auto used1 = benchmark1.exec({{1, group, h, w, 4},
- {group, 1, 1, kernel, kernel, 4},
- {1, group, 1, 1, 4},
- {},
- {}}) /
- RUN;
- printf("group/h/w/kernel:%zu,%zu,%zu,%zu: nchw: %f ms %f Gflops "
- "nchw44: "
- "%f ms %f GFlops "
- "speedup: %f\n",
- group, h, w, kernel, used0, computations / used0, used1,
- computations / used1, used0 / used1);
- };
- for (size_t group : {8, 16, 32, 64, 128}) {
- for (size_t kerenl : {2, 3, 5}) {
- run(group, 112, 112, kerenl);
- run(group, 56, 56, kerenl);
- run(group, 48, 48, kerenl);
- run(group, 28, 28, kerenl);
- run(group, 14, 14, kerenl);
- }
- }
- }
-
- #endif
-
- #if __ARM_FEATURE_DOTPROD
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE1_WITHDOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("ARMDOTS8STRD1"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Int8()},
- {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used0, computations / used0, used1, computations / used1,
- used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE2_WITHDOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("ARMDOTS8STRD2"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Int8()},
- {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used0, computations / used0, used1, computations / used1,
- used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- // clang-format off
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- // clang-format on
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0
- .set_dtype(0,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4,
- dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("ARMDOTU8STRD1"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1
- .set_dtype(0,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4,
- dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Int8()},
- {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used0, computations / used0, used1, computations / used1,
- used1 / used0);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! channel bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- // clang-format off
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32})
- for (size_t oc : {1, 8, 16, 32})
- for (size_t p : {1})
- for (NonlineMode nonline_mode : {NonlineMode::RELU}) {
- run(oc, ic, 56, 56, kernel, p, nonline_mode);
- run(oc, ic, 128, 128, kernel, p, nonline_mode);
- run(oc, ic, 256, 256, kernel, p, nonline_mode);
- }
- // clang-format on
- constexpr size_t RUN = 50;
- Benchmarker<ConvBias> benchmark0(handle());
- benchmark0
- .set_dtype(0,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4,
- dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark0.set_display(false);
- benchmark0.set_times(RUN);
- benchmark0.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("ARMDOTU8STRD2"));
-
- Benchmarker<ConvBias> benchmark1(handle());
- benchmark1
- .set_dtype(0,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(100)))
- .set_dtype(1,
- dtype::Quantized8Asymm(0.2f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4,
- dtype::Quantized8Asymm(1.4f, static_cast<uint8_t>(110)));
- benchmark1.set_display(false);
- benchmark1.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Int8()},
- {arg.filter, dtype::Int8()},
- {arg.bias, dtype::Int32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used0 = benchmark0.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
- auto used1 = benchmark1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUN;
-
- printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops "
- "speedup: %f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used0, computations / used0, used1, computations / used1,
- used1 / used0);
- }
- }
- #endif
- #endif
-
- /*====================== BENCHMARK CONV1X1 ===========================*/
- #if MEGDNN_WITH_BENCHMARK
-
- namespace {
- std::vector<conv_bias::TestArg> get_conv_bias_1x1_benchmark_args(
- size_t pack_size = 1) {
- using namespace conv_bias;
- std::vector<TestArg> args;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = 0;
- param.pad_w = 0;
- param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY;
- auto bench_case = [&](size_t OC, size_t IC, size_t H, size_t W) {
- if (pack_size == 1)
- args.emplace_back(param, TensorShape{1, IC, H, W},
- TensorShape{OC, IC, 1, 1}, TensorShape{});
- else {
- if (pack_size == 4)
- param.format = param::ConvBias::Format::NCHW44;
- args.emplace_back(param,
- TensorShape{1, IC / pack_size, H, W, pack_size},
- TensorShape{OC / pack_size, IC / pack_size, 1, 1,
- pack_size, pack_size},
- TensorShape{});
- }
- };
-
- //! MobileNetV1
- bench_case(64, 32, 112, 112);
- bench_case(128, 64, 56, 56);
- bench_case(128, 128, 56, 56);
- bench_case(256, 128, 28, 28);
- bench_case(256, 256, 28, 28);
- bench_case(512, 256, 14, 14);
- bench_case(512, 512, 14, 14);
- bench_case(1024, 512, 7, 7);
- bench_case(1024, 1024, 7, 7);
-
- //! MobileNetV2
- bench_case(16, 32, 112, 112);
- bench_case(96, 16, 112, 112);
- bench_case(144, 24, 56, 56);
- bench_case(192, 32, 28, 28);
- bench_case(384, 64, 28, 28);
- bench_case(576, 96, 14, 14);
- bench_case(960, 160, 7, 7);
- bench_case(320, 960, 7, 7);
- bench_case(1280, 320, 7, 7);
-
- //! MobileNetV3-Large
- bench_case(64, 16, 112, 112);
- bench_case(72, 24, 56, 56);
- bench_case(120, 40, 28, 28);
- bench_case(240, 40, 28, 28);
- bench_case(200, 80, 14, 14);
- bench_case(184, 80, 14, 14);
- bench_case(480, 80, 14, 14);
- bench_case(672, 112, 14, 14);
-
- //! MobileNetV3-Small
- bench_case(72, 16, 56, 56);
- bench_case(88, 24, 28, 28);
- bench_case(96, 24, 28, 28);
- bench_case(240, 40, 14, 14);
- bench_case(120, 40, 14, 14);
- bench_case(144, 48, 14, 14);
- bench_case(288, 48, 14, 14);
- bench_case(576, 96, 7, 7);
-
- //! resnet50
- bench_case(256, 64, 56, 56);
- bench_case(512, 128, 28, 28);
- bench_case(1024, 256, 14, 14);
- bench_case(2048, 512, 7, 7);
-
- return args;
- }
-
- void benchmark_conv1x1(const char* matmul_algo_name, Handle* handle,
- DType stype, DType matmul_dtype, DType bias_type,
- DType conv_dtype) {
- using namespace conv_bias;
- std::vector<TestArg> conv_bias_1x1_args =
- get_conv_bias_1x1_benchmark_args();
- constexpr size_t RUNS = 50;
-
- param::MatrixMul param;
- param.transposeA = false;
- param.transposeB = false;
- Benchmarker<MatrixMul> benchmark_matmul(handle);
- benchmark_matmul.set_before_exec_callback(
- AlgoChecker<MatrixMul>(matmul_algo_name));
- benchmark_matmul.set_times(RUNS)
- .set_dtype(0, stype)
- .set_dtype(1, stype)
- .set_dtype(2, matmul_dtype)
- .set_param(param)
- .set_display(false);
-
- std::string conv1x1_algo_name = ssprintf("CONV1x1:%s:24", matmul_algo_name);
- Benchmarker<ConvBias> benchmark_conv1x1(handle);
- benchmark_conv1x1.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- conv1x1_algo_name.c_str()));
- benchmark_conv1x1.set_times(RUNS)
- .set_dtype(0, stype)
- .set_dtype(1, stype)
- .set_dtype(2, bias_type)
- .set_dtype(4, conv_dtype)
- .set_display(false);
-
- for (auto&& arg : conv_bias_1x1_args) {
- size_t IC = arg.src[1];
- size_t OH = arg.src[2];
- size_t OW = arg.src[3];
- size_t OC = arg.filter[0];
- size_t M = OC;
- size_t K = IC;
- size_t N = OH * OW;
-
- float computations = M * N * K * 2.f / (1024 * 1024 * 1024) * 1e3;
-
- TensorShape A, B;
- A = TensorShape{M, K};
- B = TensorShape{K, N};
-
- auto conv1x1_used = benchmark_conv1x1.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}}) /
- RUNS;
- auto matmul_used = benchmark_matmul.exec({A, B, {}}) / RUNS;
-
- printf("\n%s: ", matmul_algo_name);
- printf("%s %s:\n matmul: %f ms %f Gflops\nconv1x1: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- matmul_used, computations / matmul_used, conv1x1_used,
- computations / conv1x1_used, matmul_used / conv1x1_used);
- }
- }
- } // namespace
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_F32) {
- #if MEGDNN_AARCH64
- benchmark_conv1x1("AARCH64_F32K8X12X1", handle(), dtype::Float32{},
- dtype::Float32{}, dtype::Float32{}, dtype::Float32{});
- #else
- benchmark_conv1x1("ARMV7_F32", handle(), dtype::Float32{}, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{});
- #endif
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_F16) {
- #if MEGDNN_AARCH64
- benchmark_conv1x1("AARCH64_F16_K8X24X1", handle(), dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, dtype::Float16{});
- #else
- benchmark_conv1x1("AARCH32_F16_K4X16X1", handle(), dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, dtype::Float16{});
- #endif
- }
- #endif
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_QUANTIZEDSYM) {
- dtype::QuantizedS8 stype(2.5f);
- dtype::QuantizedS32 dtype(6.25f);
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- benchmark_conv1x1("AARCH64_INT8X8X32_K8X12X4_DOTPROD", handle(), stype,
- dtype, dtype, dtype);
- #else
- benchmark_conv1x1("AARCH64_INT8X8X32_K8X8X8", handle(), stype, dtype, dtype,
- dtype);
- benchmark_conv1x1("AARCH64_INT8X8X32_K4X4X16", handle(), stype, dtype,
- dtype, dtype);
- #endif
- #elif MEGDNN_ARMV7
- benchmark_conv1x1("ARMV7_INT8X8X32_K4X8X8", handle(), stype, dtype, dtype,
- dtype);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_QUANTIZEDASYM) {
- dtype::Quantized8Asymm stype(1.2f, (uint8_t)125);
- dtype::QuantizedS32 dtype(1.2 * 1.2);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- benchmark_conv1x1("AARCH64_QUINT8_K8X8X4_DOTPROD", handle(), stype, dtype,
- dtype, dtype);
- #else
- benchmark_conv1x1("AARCH64_QUINT8_K8X8X8", handle(), stype, dtype, dtype,
- dtype);
- #endif
- #elif MEGDNN_ARMV7
- benchmark_conv1x1("ARMV7_QUINT8_K4X8X8", handle(), stype, dtype, dtype,
- dtype);
- #endif
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_INT8x8x16) {
- #if MEGDNN_AARCH64
- benchmark_conv1x1("AARCH64_INT8X8X16_K8X8X8", handle(), dtype::Int8{},
- dtype::Int16{}, dtype::Int16{}, dtype::Int16{});
- benchmark_conv1x1("AARCH64_INT8X8X16_K4X4X16", handle(), dtype::Int8{},
- dtype::Int16{}, dtype::Int16{}, dtype::Int16{});
- #elif MEGDNN_ARMV7
- benchmark_conv1x1("ARMV7_INT8X8X16_K4X8X8", handle(), dtype::Int8{},
- dtype::Int16{}, dtype::Int16{}, dtype::Int16{});
- benchmark_conv1x1("ARMV7_INT8X8X16_K4X2X16", handle(), dtype::Int8{},
- dtype::Int16{}, dtype::Int16{}, dtype::Int16{});
- #endif
- }
-
- #ifndef __ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_1X1_S1_NCHW_VS_NCHW44_INT8x8x32) {
- std::vector<TestArg> conv_bias_1x1_args_nchw44 =
- get_conv_bias_1x1_benchmark_args(4);
- std::vector<TestArg> conv_bias_1x1_args_nchw =
- get_conv_bias_1x1_benchmark_args(1);
- constexpr size_t RUNS = 50;
-
- Benchmarker<ConvBias> benchmark_conv1x1_nchw44(handle());
- benchmark_conv1x1_nchw44.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- "CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24"));
- benchmark_conv1x1_nchw44.set_times(RUNS)
- .set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_display(false);
-
- Benchmarker<ConvBias> benchmark_conv1x1_nchw(handle());
- benchmark_conv1x1_nchw.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- "CONV1x1:AARCH64_INT8X8X32_K4X4X16:24"));
- benchmark_conv1x1_nchw.set_times(RUNS)
- .set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_display(false);
-
- for (size_t i = 0; i < conv_bias_1x1_args_nchw44.size(); ++i) {
- auto&& arg_nchw = conv_bias_1x1_args_nchw[i];
- auto&& arg_nchw44 = conv_bias_1x1_args_nchw44[i];
-
- size_t IC = arg_nchw.src[1];
- size_t OH = arg_nchw.src[2];
- size_t OW = arg_nchw.src[3];
- size_t OC = arg_nchw.filter[0];
- size_t M = OC;
- size_t K = IC;
- size_t N = OH * OW;
-
- float computations = M * N * K * 2.f / (1024 * 1024 * 1024) * 1e3;
-
- auto conv1x1_nchw = benchmark_conv1x1_nchw.set_param(arg_nchw.param)
- .exec({arg_nchw.src,
- arg_nchw.filter,
- arg_nchw.bias,
- {},
- {}}) /
- RUNS;
- auto conv1x1_nchw44 =
- benchmark_conv1x1_nchw44.set_param(arg_nchw44.param)
- .exec({arg_nchw44.src,
- arg_nchw44.filter,
- arg_nchw44.bias,
- {},
- {}}) /
- RUNS;
- printf("%s %s:\n conv_1x1_nchw: %f ms %f Gflops\nconv1x1_nchw44: %f ms "
- "%f GFlops "
- "speedup: "
- "%f\n",
- arg_nchw.src.to_string().c_str(),
- arg_nchw.filter.to_string().c_str(), conv1x1_nchw,
- computations / conv1x1_nchw, conv1x1_nchw44,
- computations / conv1x1_nchw44, conv1x1_nchw / conv1x1_nchw44);
- }
- }
- #endif
-
- TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_WINOGRAD_VS_IM2COL_INT8) {
- auto&& args = get_winograd_benchmark_args(3, 8);
- using namespace conv_bias;
- constexpr size_t RUN = 10;
-
- Benchmarker<ConvBias> benchmark_im2col(handle());
- benchmark_im2col.set_display(false);
- benchmark_im2col.set_times(RUN);
- benchmark_im2col.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
-
- Benchmarker<ConvBias> benchmark_winograd(handle());
- benchmark_winograd.set_display(false);
- benchmark_winograd.set_times(RUN);
- benchmark_winograd.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f));
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Float32()},
- {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- benchmark_im2col.set_param(arg.param);
- auto im2col_used =
- algo_benchmark<ConvBias>(
- benchmark_im2col, {arg.src, arg.filter, {}, {}, {}},
- "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16") /
- RUN;
-
- benchmark_winograd.set_param(arg.param);
- auto winograd_used =
- algo_benchmark<ConvBias>(
- benchmark_winograd, {arg.src, arg.filter, {}, {}, {}},
- "WINOGRAD:AARCH64_INT16X16X32_MK8_8X8:8:2") /
- RUN;
-
- printf("%s %s: im2col: %f ms %f Gflops winograd: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- im2col_used, computations / im2col_used, winograd_used,
- computations / winograd_used, im2col_used / winograd_used);
- }
- }
-
- #endif
-
- // vim: syntax=cpp.doxygen
|