|
- /**
- * \file dnn/src/cuda/convolution/backward_data/group_conv.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
-
- #include "./algo.h"
-
- using namespace megdnn;
- using namespace cuda;
- using namespace convolution;
-
- namespace {
- std::pair<TensorLayoutArray, Convolution::Param> sub_opr_config(
- const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) {
- TensorLayout filter_pg = *args.filter_layout;
- TensorLayout diff_pg = *args.diff_layout;
- TensorLayout grad_pg = *args.grad_layout;
-
- filter_pg.remove_axis_inplace(0);
- auto nr_grp = args.filter_meta.group;
- size_t c_pos = 1;
- diff_pg.shape[c_pos] /= nr_grp;
- grad_pg.shape[c_pos] /= nr_grp;
-
- megdnn::param::Convolution param = args.opr->param();
- param.sparse = megdnn::param::ConvBias::Sparse::DENSE;
- std::pair<TensorLayoutArray, ConvolutionBackwardDataImpl::Param> ret;
- ret.first = {filter_pg, diff_pg, grad_pg};
- ret.second = param;
-
- return ret;
- }
-
- std::pair<TensorLayoutArray, std::unique_ptr<ConvolutionBackwardData>>
- prepare_sub_opr(const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) {
- auto conv_bwd_data_opr =
- args.handle->create_operator<ConvolutionBackwardData>();
- set_execution_policy<ConvolutionBackwardData, ConvolutionBackwardData*>(
- args.opr, conv_bwd_data_opr.get());
- auto&& config = sub_opr_config(args);
- conv_bwd_data_opr->param() = config.second;
-
- return {config.first, std::move(conv_bwd_data_opr)};
- }
- } // namespace
-
- std::vector<Algorithm::SearchItem>
- ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::get_subopr_list(
- const TensorLayoutArray& layouts, const OperatorBase* opr) const {
- AlgoBase::SizeArgs args{
- static_cast<const ConvolutionBackwardDataImpl*>(opr), layouts[0],
- layouts[1], layouts[2]};
- auto&& config = sub_opr_config(args);
-
- std::string param_str;
- Algorithm::serialize_write_pod(config.second, param_str);
- return {{Algorithm::OprType::CONVOLUTION_BACKWARD_DATA, param_str,
- config.first}};
- }
-
- bool ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::is_available(
- const SizeArgs& args) const {
- if ((args.diff_layout->dtype == args.filter_layout->dtype &&
- args.diff_layout->dtype == dtype::BFloat16()) ||
- (args.diff_layout->dtype == args.filter_layout->dtype &&
- args.diff_layout->dtype == dtype::QuantizedS8())) {
- return false;
- }
- if (args.filter_meta.group <= 1)
- return false;
-
- if (args.filter_meta.format !=
- megdnn::param::Convolution::Format::NCHW) {
- return false;
- }
-
- auto config = prepare_sub_opr(args);
-
- return has_available_algo<ConvolutionBackwardDataImpl>(
- static_cast<ConvolutionBackwardDataImpl*>(config.second.get()),
- config.first[0], config.first[1], config.first[2]);
- }
-
- WorkspaceBundle
- ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::get_workspace_bundle(
- void* ptr, const SizeArgs& args) const {
- auto config = prepare_sub_opr(args);
- size_t sizes = config.second->get_workspace_in_bytes(
- config.first[0], config.first[1], config.first[2]);
- return {ptr, {sizes}};
- }
-
- size_t
- ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::get_workspace_in_bytes(
- const SizeArgs& args) const {
- return get_workspace_bundle(nullptr, args).total_size_in_bytes();
- }
-
- void ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::exec(
- const ExecArgs& args) const {
- auto bundle = get_workspace_bundle(args.workspace.raw_ptr, args);
- {
- auto config = prepare_sub_opr(args);
- TensorND tfilter{args.filter_tensor->raw_ptr, config.first[0]};
- TensorND tdiff{args.diff_tensor->raw_ptr, config.first[1]};
- TensorND tgrad{args.grad_tensor->raw_ptr, config.first[2]};
-
- size_t c_pos = 1;
-
- auto&& fm = args.filter_meta;
-
- auto strd_flt = fm.icpg * fm.ocpg * fm.spatial[0] * fm.spatial[1] *
- tfilter.layout.dtype.size(),
- strd_diff = tdiff.layout.stride[c_pos] * fm.ocpg *
- tdiff.layout.dtype.size(),
- strd_grad = (tgrad.layout.stride[c_pos] * fm.icpg *
- tgrad.layout.dtype.size());
-
- auto grp = args.filter_meta.group;
- for (uint32_t g = 0; g < grp; ++g) {
- config.second->exec(tfilter, tdiff, tgrad, bundle.get_workspace(0));
- incr_voidp(tfilter.raw_ptr, strd_flt);
- incr_voidp(tdiff.raw_ptr, strd_diff);
- incr_voidp(tgrad.raw_ptr, strd_grad);
- }
- }
- }
-
- // vim: syntax=cpp.doxygen
|