|
- /**
- * \file dnn/src/cuda/convolution3d/backward_data/group_conv.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "./algo.h"
-
- using namespace megdnn;
- using namespace cuda;
- using namespace convolution3d;
-
- namespace {
- std::pair<TensorLayoutArray, Convolution3DBackwardDataImpl::Param>
- sub_opr_config(const Convolution3DBackwardDataImpl::AlgoBase::SizeArgs& args) {
- TensorLayout filter_pg = *args.filter_layout;
- TensorLayout diff_pg = *args.diff_layout;
- TensorLayout grad_pg = *args.grad_layout;
-
- filter_pg.remove_axis_inplace(0);
- auto nr_grp = args.filter_meta.group;
- size_t c_pos = 1;
- diff_pg.shape[c_pos] /= nr_grp;
- grad_pg.shape[c_pos] /= nr_grp;
-
- megdnn::param::Convolution3D param = args.opr->param();
- param.sparse = megdnn::param::Convolution3D::Sparse::DENSE;
- std::pair<TensorLayoutArray, Convolution3DBackwardDataImpl::Param> ret;
- ret.first = {filter_pg, diff_pg, grad_pg};
- ret.second = param;
-
- return ret;
- }
-
- std::pair<TensorLayoutArray, std::unique_ptr<Convolution3DBackwardData>>
- prepare_sub_opr(const Convolution3DBackwardDataImpl::AlgoBase::SizeArgs& args) {
- auto conv3d_backdata_opr =
- args.handle->create_operator<Convolution3DBackwardData>();
- set_execution_policy<Convolution3DBackwardData, Convolution3DBackwardData*>(
- args.opr, conv3d_backdata_opr.get());
- auto&& config = sub_opr_config(args);
- conv3d_backdata_opr->param() = config.second;
-
- return {config.first, std::move(conv3d_backdata_opr)};
- }
- } // namespace
-
- std::vector<Algorithm::SearchItem>
- Convolution3DBackwardDataImpl::AlgoGroupConvGeneral::get_subopr_list(
- const TensorLayoutArray& layouts, const OperatorBase* opr) const {
- AlgoBase::SizeArgs args{
- static_cast<const Convolution3DBackwardDataImpl*>(opr), layouts[0],
- layouts[1], layouts[2]};
- auto&& config = sub_opr_config(args);
-
- std::string param_str;
- Algorithm::serialize_write_pod(config.second, param_str);
- return {{Algorithm::OprType::CONVOLUTION3D_BACKWARD_DATA, param_str,
- config.first}};
- }
-
- bool Convolution3DBackwardDataImpl::AlgoGroupConvGeneral::is_available(
- const SizeArgs &args) const {
- if (args.filter_meta.group <= 1)
- return false;
- if (args.filter_meta.format != Param::Format::NCDHW) {
- return false;
- }
-
- auto config = prepare_sub_opr(args);
-
- return has_available_algo<Convolution3DBackwardDataImpl>(
- static_cast<Convolution3DBackwardDataImpl*>(config.second.get()),
- config.first[0], config.first[1], config.first[2]);
- }
-
- WorkspaceBundle
- Convolution3DBackwardDataImpl::AlgoGroupConvGeneral::get_workspace_bundle(
- void* ptr, const SizeArgs& args) const {
- auto config = prepare_sub_opr(args);
- size_t sizes = config.second->get_workspace_in_bytes(
- config.first[0], config.first[1], config.first[2]);
- return {ptr, {sizes}};
- }
-
- size_t
- Convolution3DBackwardDataImpl::AlgoGroupConvGeneral::get_workspace_in_bytes(
- const SizeArgs& args) const {
- return get_workspace_bundle(nullptr, args).total_size_in_bytes();
- }
-
- void Convolution3DBackwardDataImpl::AlgoGroupConvGeneral::exec(
- const ExecArgs& args) const {
- auto bundle = get_workspace_bundle(args.workspace.raw_ptr, args);
- {
- auto config = prepare_sub_opr(args);
- TensorND tfilter{args.filter_tensor->raw_ptr, config.first[0]};
- TensorND tdiff{args.diff_tensor->raw_ptr, config.first[1]};
- TensorND tgrad{args.grad_tensor->raw_ptr, config.first[2]};
-
- size_t c_pos = 1;
- auto grp = args.filter_meta.group;
-
- auto&& fm = args.filter_meta;
- auto strd_flt = (fm.icpg * fm.ocpg * fm.spatial[0] * fm.spatial[1] *
- fm.spatial[2] * tfilter.layout.dtype.size()),
- strd_diff = (tdiff.layout.stride[c_pos] * fm.ocpg *
- tdiff.layout.dtype.size()),
- strd_grad = (tgrad.layout.stride[c_pos] * fm.icpg *
- tgrad.layout.dtype.size());
-
- for (uint32_t g = 0; g < grp; ++g) {
- config.second->exec(tfilter, tdiff, tgrad, bundle.get_workspace(0));
- incr_voidp(tfilter.raw_ptr, strd_flt);
- incr_voidp(tdiff.raw_ptr, strd_diff);
- incr_voidp(tgrad.raw_ptr, strd_grad);
- }
- }
- }
-
- // vim: syntax=cpp.doxygen
|