|
- /**
- * \file dnn/src/x86/matrix_mul/algos.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
-
- #include "src/common/utils.h"
- #include "src/fallback/matrix_mul/gemm_impl.h"
- #include "src/x86/matrix_mul/algos.h"
- #include "src/x86/matrix_mul/f32/strategy.h"
- #include "src/x86/matrix_mul/int8/strategy.h"
-
- #include "midout.h"
-
- MIDOUT_DECL(megdnn_x86_matmul_kern)
- MIDOUT_DECL(megdnn_x86_matmul_kern_mk8_8x8)
- MIDOUT_DECL(megdnn_x86_matmul_kern_mkldnn)
- using namespace megdnn;
- using namespace x86;
-
- /* ===================== F32 Blas algo ===================== */
- namespace {
-
- void f32_blas_kern(const MatrixMulImpl::KernParam& kern_param) {
- #if MEGDNN_X86_WITH_MKL || MEGDNN_X86_WITH_OPENBLAS
- auto m = kern_param.M, n = kern_param.N, k = kern_param.K;
- bool trA = kern_param.trA, trB = kern_param.trB;
- const auto Aptr = kern_param.A<dt_float32>(),
- Bptr = kern_param.B<dt_float32>();
- auto Cptr = kern_param.C<dt_float32>();
- auto Atrd = kern_param.LDA, Btrd = kern_param.LDB, Ctrd = kern_param.LDC;
- disable_denorm();
- cblas_sgemm(CblasRowMajor, trA ? CblasTrans : CblasNoTrans,
- trB ? CblasTrans : CblasNoTrans, m, n, k, 1.0f, Aptr, Atrd,
- Bptr, Btrd, 0.0f, Cptr, Ctrd);
- #else
- megdnn_throw("a blas library is required");
- #endif
- }
-
- #if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM
- void f32_blas_kern_only_packA(const MatrixMulImpl::KernParam& kern_param,
- const void* a_panel, const void* b_panel) {
- MEGDNN_MARK_USED_VAR(b_panel);
- auto m = kern_param.M, n = kern_param.N, k = kern_param.K;
- const auto Bptr = kern_param.B<dt_float32>();
- auto Cptr = kern_param.C<dt_float32>();
- auto Atrd = kern_param.LDA, Btrd = kern_param.LDB, Ctrd = kern_param.LDC;
- disable_denorm();
- cblas_sgemm_compute(CblasRowMajor, CblasPacked, CblasNoTrans, m, n, k,
- static_cast<const float*>(a_panel), Atrd, Bptr, Btrd,
- 0.0f, Cptr, Ctrd);
- }
- #endif
-
- } // anonymous namespace
-
- bool MatrixMulImpl::AlgoF32Blas::usable(
- const KernSizeParam& kern_size_param) const {
- #if MEGDNN_X86_WITH_MKL || MEGDNN_X86_WITH_OPENBLAS
- return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
- kern_size_param.B_type == kern_size_param.A_type &&
- kern_size_param.C_type == kern_size_param.A_type &&
- kern_size_param.A_type == dtype::Float32() &&
- preferred(kern_size_param);
- #else
- return false;
- #endif
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32Blas::get_kern(
- const KernSizeParam&) const {
- return f32_blas_kern;
- }
-
- /* ===================== AlgoF32BlasPackA====================== */
- #if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM
- bool MatrixMulImpl::AlgoF32MKLPackA::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
- kern_size_param.B_type == kern_size_param.A_type &&
- kern_size_param.C_type == kern_size_param.A_type &&
- kern_size_param.A_type == dtype::Float32() &&
- preferred(kern_size_param);
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MKLPackA::get_kern(
- const KernSizeParam&) const {
- return f32_blas_kern;
- }
-
- MatrixMulImpl::kern_naked_t MatrixMulImpl::AlgoF32MKLPackA::get_kern_naked(
- const KernSizeParam&) const {
- return f32_blas_kern_only_packA;
- }
-
- WorkspaceBundle MatrixMulImpl::AlgoF32MKLPackA::get_bundle(
- const KernSizeParam& param) const {
- auto M = param.M;
- auto N = param.N;
- auto K = param.K;
- size_t a_size = cblas_sgemm_pack_get_size(CblasAMatrix, M, N, K);
- return {nullptr, {a_size, 0, 0}};
- }
-
- void MatrixMulImpl::AlgoF32MKLPackA::pack_A(const KernParam& kern_param,
- void* out, size_t index,
- size_t stride) const {
- MEGDNN_MARK_USED_VAR(stride);
- MEGDNN_MARK_USED_VAR(index);
- auto m = kern_param.M, n = kern_param.N, k = kern_param.K;
- const auto Aptr = kern_param.A<dt_float32>();
- auto Atrd = kern_param.LDA;
- disable_denorm();
- cblas_sgemm_pack(CblasRowMajor, CblasAMatrix, CblasNoTrans, m, n, k, 1.0f,
- Aptr, Atrd, static_cast<float*>(out));
- }
- #endif
- /* ===================== Int8 Vnni algo ===================== */
-
- #if MEGDNN_X86_WITH_VNNI
- #define ALIGN_SIZE 64
- namespace {
- void int8x8x32_kern_vnni(const MatrixMulImpl::KernParam& kern_param) {
- MEGDNN_MARK_USED_VAR(kern_param);
- MIDOUT_BEGIN(megdnn_x86_matmul_kern_vnni, midout_iv(0)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<dt_int8>(),
- Bptr = kern_param.B<dt_int8>();
- auto Cptr = kern_param.C<dt_int32>();
- x86::matmul::gemm_int8_vnni_12x32x4 strategy(M, N, K, A_type, B_type,
- C_type);
- megdnn::matmul::GemmInterleaved<x86::matmul::gemm_int8_vnni_12x32x4>(
- M, N, K, trA, trB, strategy, ALIGN_SIZE)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
- kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
-
- size_t get_kern_workspace(MatrixMulImpl::KernSizeParam kern_size_param) {
- auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
- auto trA = kern_size_param.trA, trB = kern_size_param.trB;
- auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
- C_type = kern_size_param.C_type;
- x86::matmul::gemm_int8_vnni_12x32x4 strategy(M, N, K, A_type, B_type,
- C_type);
- return megdnn::matmul::GemmInterleaved<x86::matmul::gemm_int8_vnni_12x32x4>(
- M, N, K, trA, trB, strategy, ALIGN_SIZE)
- .get_workspace_size();
- }
- } // namespace
-
- bool MatrixMulImpl::AlgoInt8x8x32Vnni::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
- ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
- (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == Param::Format::DEFAULT &&
- preferred(kern_size_param) && is_supported(SIMDType::VNNI);
- }
-
- size_t MatrixMulImpl::AlgoInt8x8x32Vnni::get_workspace(
- const KernSizeParam& kern_size_param) const {
- return get_kern_workspace(kern_size_param);
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32Vnni::get_kern(
- const KernSizeParam&) const {
- return int8x8x32_kern_vnni;
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(
- AlgoInt8x8x32Vnni, megdnn_x86_matmul_kern, "AlgoInt8x8x32Vnni"_hash,
- x86::matmul::gemm_int8_vnni_12x32x4, dt_int8, dt_int32,
- dt_uint8AlgoDataType::QINT8X8X32, DEFAULT);
- #endif
-
- /* ===================== Int8 mkldnn algo ===================== */
- #if MEGDNN_X86_WITH_MKL_DNN
- namespace {
- void int8x8x32_kern_mkldnn(const MatrixMulImpl::KernParam& kern_param) {
- MEGDNN_MARK_USED_VAR(kern_param);
- MIDOUT_BEGIN(megdnn_x86_matmul_kern_mkldnn, midout_iv(0)) {
- const char transA = kern_param.trA ? 'T' : 'N';
- const char transB = kern_param.trB ? 'T' : 'N';
- const char offsetC = 'F';
- const int64_t M = static_cast<int64_t>(kern_param.M);
- const int64_t N = static_cast<int64_t>(kern_param.N);
- const int64_t K = static_cast<int64_t>(kern_param.K);
- const int64_t LDA = static_cast<int64_t>(kern_param.LDA);
- const int64_t LDB = static_cast<int64_t>(kern_param.LDB);
- const int64_t LDC = static_cast<int64_t>(kern_param.LDC);
-
- const float alpha = 1.0f, beta = 0.0f;
- const int8_t ao = 0, bo = 0;
- const int32_t co = 0;
- const int8_t* A_ptr = static_cast<const int8_t*>(kern_param.A_ptr);
- const int8_t* B_ptr = static_cast<const int8_t*>(kern_param.B_ptr);
- int32_t* C_ptr = static_cast<int32_t*>(kern_param.C_ptr);
- auto status = mkldnn_gemm_s8s8s32(transA, transB, offsetC, M, N, K,
- alpha, A_ptr, LDA, ao, B_ptr, LDB, bo,
- beta, C_ptr, LDC, &co);
- megdnn_assert(status == mkldnn_success,
- "mkldnn_gemm_s8s8s32 compute error!!!");
- }
- MIDOUT_END();
- }
- } // namespace
-
- bool MatrixMulImpl::AlgoInt8x8x32Mkldnn::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
- ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
- (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == Param::Format::DEFAULT &&
- is_supported(SIMDType::VNNI) && preferred(kern_size_param);
- }
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32Mkldnn::get_kern(
- const KernSizeParam&) const {
- return int8x8x32_kern_mkldnn;
- }
- #endif
-
- namespace {
-
- void gemm_s8s8s32_avx2_2x4x16(const MatrixMulImpl::KernParam& kern_param) {
- MEGDNN_MARK_USED_VAR(kern_param);
- MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_2x4x16, midout_iv(0)) {
- constexpr int cacheline = 64;
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- const size_t lda = kern_param.LDA;
- const size_t ldb = kern_param.LDB;
- const size_t ldc = kern_param.LDC;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- const auto a_ptr = kern_param.A<dt_int8>();
- const auto b_ptr = kern_param.B<dt_int8>();
- auto c_ptr = kern_param.C<dt_int32>();
- x86::matmul::gemm_avx2_s8s8s32_2x4x16 strategy(m, n, k, a_type, b_type,
- c_type);
-
- megdnn::matmul::GemmInterleaved<x86::matmul::gemm_avx2_s8s8s32_2x4x16>(
- m, n, k, trans_a, trans_b, strategy, cacheline)
- .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc,
- kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
-
- void gemm_s8s8s32_avx2_4x16x2(const MatrixMulImpl::KernParam& kern_param) {
- MEGDNN_MARK_USED_VAR(kern_param);
- MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_4x16x2, midout_iv(0)) {
- constexpr int cacheline = 64;
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- const size_t lda = kern_param.LDA;
- const size_t ldb = kern_param.LDB;
- const size_t ldc = kern_param.LDC;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- const auto a_ptr = kern_param.A<dt_int8>();
- const auto b_ptr = kern_param.B<dt_int8>();
- auto c_ptr = kern_param.C<dt_int32>();
- x86::matmul::gemm_avx2_s8s8s32_4x16x2 strategy(m, n, k, a_type, b_type,
- c_type);
-
- megdnn::matmul::GemmInterleaved<x86::matmul::gemm_avx2_s8s8s32_4x16x2>(
- m, n, k, trans_a, trans_b, strategy, cacheline)
- .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc,
- kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
-
- void gemm_s8s8s32_sse_4x8x2(const MatrixMulImpl::KernParam& kern_param) {
- MEGDNN_MARK_USED_VAR(kern_param);
- MIDOUT_BEGIN(megdnn_x86_matmul_kern_sse_4x8x2, midout_iv(0)) {
- constexpr int cacheline = 64;
- x86::matmul::gemm_sse_s8s8s32_4x8x2 strategy(
- kern_param.M, kern_param.N, kern_param.K, kern_param.A_type,
- kern_param.B_type, kern_param.C_type);
-
- megdnn::matmul::GemmInterleaved<x86::matmul::gemm_sse_s8s8s32_4x8x2>(
- kern_param.M, kern_param.N, kern_param.K, kern_param.trA,
- kern_param.trB, strategy, cacheline)
- .execute(kern_param.A<dt_int8>(), kern_param.LDA,
- kern_param.B<dt_int8>(), kern_param.LDB,
- kern_param.C<dt_int32>(), kern_param.LDC,
- kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
-
- void gemm_f32_avx2_6x16(const MatrixMulImpl::KernParam& kern_param) {
- MEGDNN_MARK_USED_VAR(kern_param);
- MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_6x16x2, midout_iv(0)) {
- constexpr int cacheline = 64;
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- const size_t lda = kern_param.LDA;
- const size_t ldb = kern_param.LDB;
- const size_t ldc = kern_param.LDC;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- const auto a_ptr = kern_param.A<float>();
- const auto b_ptr = kern_param.B<float>();
- auto c_ptr = kern_param.C<float>();
- x86::matmul::sgemm_pack_6x16_avx2 strategy(m, n, k, a_type, b_type,
- c_type);
-
- megdnn::matmul::GemmInterleaved<x86::matmul::sgemm_pack_6x16_avx2>(
- m, n, k, trans_a, trans_b, strategy, cacheline)
- .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc,
- kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
-
- } // namespace
-
- /*************************AlgoInt8x8x16AVX2********************/
- void MatrixMulImpl::AlgoInt8x8x16AVX2::gemm_s8s8s16_avx2_4x16x2(
- const MatrixMulImpl::KernParam& kern_param) {
- MEGDNN_MARK_USED_VAR(kern_param);
- MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_4x16x2, midout_iv(1)) {
- constexpr int cacheline = 64;
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- const size_t lda = kern_param.LDA;
- const size_t ldb = kern_param.LDB;
- const size_t ldc = kern_param.LDC;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- const auto a_ptr = kern_param.A<dt_int8>();
- const auto b_ptr = kern_param.B<dt_int8>();
- auto c_ptr = kern_param.C<dt_int16>();
- x86::matmul::gemm_avx2_s8s8s16_4x16x2 strategy(m, n, k, a_type, b_type,
- c_type);
-
- megdnn::matmul::GemmInterleaved<x86::matmul::gemm_avx2_s8s8s16_4x16x2>(
- m, n, k, trans_a, trans_b, strategy, cacheline)
- .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc,
- kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16AVX2::get_kern(
- const KernSizeParam&) const {
- return gemm_s8s8s16_avx2_4x16x2;
- }
- bool MatrixMulImpl::AlgoInt8x8x16AVX2::usable(
- const KernSizeParam& kern_size_param) const {
- bool is_ab_same =
- kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv();
- bool is_type_ok =
- ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::Int16) ||
- (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS16));
- bool is_mode_ok =
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == Param::Format::DEFAULT &&
- is_supported(SIMDType::AVX2);
- bool is_param_ok = is_ab_same && is_type_ok && is_mode_ok;
-
- return is_param_ok;
- }
- bool MatrixMulImpl::AlgoInt8x8x16AVX2::preferred(const KernSizeParam&) const {
- return true;
- }
- size_t MatrixMulImpl::AlgoInt8x8x16AVX2::get_workspace(
- const KernSizeParam& kern_param) const {
- constexpr int cacheline = 64;
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- x86::matmul::gemm_avx2_s8s8s16_4x16x2 strategy(m, n, k, a_type, b_type,
- c_type);
-
- return megdnn::matmul::GemmInterleaved<
- x86::matmul::gemm_avx2_s8s8s16_4x16x2>(
- m, n, k, trans_a, trans_b, strategy, cacheline)
- .get_workspace_size();
- }
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(
- AlgoInt8x8x16AVX2, megdnn_x86_matmul_kern, "AlgoInt8x8x16AVX2"_hash,
- x86::matmul::gemm_avx2_s8s8s16_4x16x2, dt_int8, dt_int16, dt_int16,
- AlgoDataType::INT8X8X16, DEFAULT);
-
- /*************************AlgoInt8x8x16SSE********************/
- void MatrixMulImpl::AlgoInt8x8x16SSE::gemm_s8s8s16_sse_4x8x2(
- const MatrixMulImpl::KernParam& kern_param) {
- MEGDNN_MARK_USED_VAR(kern_param);
- MIDOUT_BEGIN(megdnn_x86_matmul_kern_sse_4x8x2, midout_iv(2)) {
- constexpr int cacheline = 64;
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- const size_t lda = kern_param.LDA;
- const size_t ldb = kern_param.LDB;
- const size_t ldc = kern_param.LDC;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- const auto a_ptr = kern_param.A<dt_int8>();
- const auto b_ptr = kern_param.B<dt_int8>();
- auto c_ptr = kern_param.C<dt_int16>();
- x86::matmul::gemm_sse_s8s8s16_4x8x2 strategy(m, n, k, a_type, b_type,
- c_type);
-
- megdnn::matmul::GemmInterleaved<x86::matmul::gemm_sse_s8s8s16_4x8x2>(
- m, n, k, trans_a, trans_b, strategy, cacheline)
- .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc,
- kern_param.workspace_ptr);
- }
- MIDOUT_END();
- }
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16SSE::get_kern(
- const KernSizeParam&) const {
- return gemm_s8s8s16_sse_4x8x2;
- }
- bool MatrixMulImpl::AlgoInt8x8x16SSE::usable(
- const KernSizeParam& kern_size_param) const {
- bool is_ab_same =
- kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv();
- bool is_type_ok =
- ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::Int16) ||
- (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS16));
- bool is_mode_ok =
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == Param::Format::DEFAULT &&
- is_supported(SIMDType::SSE4_1);
- bool is_param_ok = is_ab_same && is_type_ok && is_mode_ok;
- return is_param_ok;
- }
- bool MatrixMulImpl::AlgoInt8x8x16SSE::preferred(const KernSizeParam&) const {
- return true;
- }
- size_t MatrixMulImpl::AlgoInt8x8x16SSE::get_workspace(
- const KernSizeParam& kern_param) const {
- constexpr int cacheline = 64;
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- x86::matmul::gemm_sse_s8s8s16_4x8x2 strategy(m, n, k, a_type, b_type,
- c_type);
-
- return megdnn::matmul::GemmInterleaved<x86::matmul::gemm_sse_s8s8s16_4x8x2>(
- m, n, k, trans_a, trans_b, strategy, cacheline)
- .get_workspace_size();
- }
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(AlgoInt8x8x16SSE,
- megdnn_x86_matmul_kern,
- "AlgoInt8x8x16SSE"_hash,
- x86::matmul::gemm_sse_s8s8s16_4x8x2,
- dt_int8, dt_int16, dt_int16,
- AlgoDataType::INT8X8X16, DEFAULT);
-
- /*************************AlgoInt8x8x32AVX2M4N16K2********************/
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::get_kern(
- const KernSizeParam&) const {
- return gemm_s8s8s32_avx2_4x16x2;
- }
- bool MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::usable(
- const KernSizeParam& kern_size_param) const {
- bool is_param_ok =
- kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
- ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
- (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == Param::Format::DEFAULT &&
- is_supported(SIMDType::AVX2);
- return is_param_ok;
- }
- size_t MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::get_workspace(
- const KernSizeParam& kern_param) const {
- constexpr int cacheline = 64;
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- x86::matmul::gemm_avx2_s8s8s32_4x16x2 strategy(m, n, k, a_type, b_type,
- c_type);
-
- return megdnn::matmul::GemmInterleaved<
- x86::matmul::gemm_avx2_s8s8s32_4x16x2>(
- m, n, k, trans_a, trans_b, strategy, cacheline)
- .get_workspace_size();
- }
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(
- AlgoInt8x8x32AVX2M4N16K2, megdnn_x86_matmul_kern,
- "AlgoInt8x8x32AVX2M4N16K2"_hash, x86::matmul::gemm_avx2_s8s8s32_4x16x2,
- dt_int8, dt_int32, dt_int16, AlgoDataType::QINT8X8X32, DEFAULT);
-
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::get_kern(
- const KernSizeParam&) const {
- return gemm_s8s8s32_avx2_2x4x16;
- }
- bool MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
- ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
- (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == Param::Format::DEFAULT &&
- is_supported(SIMDType::AVX2);
- }
- size_t MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::get_workspace(
- const KernSizeParam& kern_param) const {
- constexpr int cacheline = 64;
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- x86::matmul::gemm_avx2_s8s8s32_2x4x16 strategy(m, n, k, a_type, b_type,
- c_type);
-
- return megdnn::matmul::GemmInterleaved<
- x86::matmul::gemm_avx2_s8s8s32_2x4x16>(
- m, n, k, trans_a, trans_b, strategy, cacheline)
- .get_workspace_size();
- }
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32AVX2M2N4K16,
- megdnn_x86_matmul_kern,
- "AlgoInt8x8x32AVX2M2N4K16"_hash,
- x86::matmul::gemm_avx2_s8s8s32_2x4x16,
- dt_int8, dt_int32,
- AlgoDataType::QINT8X8X32, DEFAULT);
-
- /*************************AlgoInt8x8x32SSEM4N8K2********************/
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::get_kern(
- const KernSizeParam&) const {
- return gemm_s8s8s32_sse_4x8x2;
- }
- bool MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::usable(
- const KernSizeParam& kern_size_param) const {
- return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
- ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
- (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
- kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == Param::Format::DEFAULT &&
- is_supported(SIMDType::SSE4_1);
- }
- size_t MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::get_workspace(
- const KernSizeParam& kern_param) const {
- constexpr int cacheline = 64;
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- x86::matmul::gemm_sse_s8s8s32_4x8x2 strategy(m, n, k, a_type, b_type,
- c_type);
-
- return megdnn::matmul::GemmInterleaved<x86::matmul::gemm_sse_s8s8s32_4x8x2>(
- m, n, k, trans_a, trans_b, strategy, cacheline)
- .get_workspace_size();
- }
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(AlgoInt8x8x32SSEM4N8K2,
- megdnn_x86_matmul_kern,
- "AlgoInt8x8x32SSEM4N8K2"_hash,
- x86::matmul::gemm_sse_s8s8s32_4x8x2,
- dt_int8, dt_int32, dt_int16,
- AlgoDataType::QINT8X8X32, DEFAULT);
-
- /*************************AlgoF32MK8_8x8********************/
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MK8_8x8::get_kern(
- const KernSizeParam&) const {
- auto f32_kern_mk8_8x8 = [](const MatrixMulImpl::KernParam& kern_param) {
- MIDOUT_BEGIN(megdnn_x86_matmul_kern_mk8_8x8, midout_iv(0)) {
- auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
- auto trA = kern_param.trA, trB = kern_param.trB;
- auto LDA = kern_param.LDA, LDB = kern_param.LDB,
- LDC = kern_param.LDC;
- auto A_type = kern_param.A_type, B_type = kern_param.B_type,
- C_type = kern_param.C_type;
- const auto Aptr = kern_param.A<float>(),
- Bptr = kern_param.B<float>();
- auto Cptr = kern_param.C<float>();
-
- x86::matmul::sgemm_nopack_8x8_avx2 strategy(A_type, B_type, C_type);
- megdnn::matmul::GemmInterleaved<x86::matmul::sgemm_nopack_8x8_avx2,
- false>(M, N, K, trA, trB, strategy)
- .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
- kern_param.workspace_ptr);
- }
- MIDOUT_END();
- };
- return f32_kern_mk8_8x8;
- }
-
- bool MatrixMulImpl::AlgoF32MK8_8x8::usable(
- const KernSizeParam& kern_size_param) const {
- constexpr static size_t MB = 8;
- constexpr static size_t KB = 8;
- return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.B_type.enumv() == kern_size_param.A_type.enumv() &&
- kern_size_param.C_type.enumv() == kern_size_param.A_type.enumv() &&
- kern_size_param.A_type.enumv() == DTypeEnum::Float32 &&
- kern_size_param.format == param::MatrixMul::Format::MK8 &&
- !kern_size_param.trA && !kern_size_param.trB &&
- kern_size_param.M % MB == 0 && kern_size_param.K % KB == 0 &&
- is_supported(SIMDType::FMA);
- }
-
- size_t MatrixMulImpl::AlgoF32MK8_8x8::get_workspace(
- const KernSizeParam& kern_param) const {
- MIDOUT_BEGIN(megdnn_x86_matmul_kern_mk8_8x8, midout_iv(0)) {
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- x86::matmul::sgemm_nopack_8x8_avx2 strategy(a_type, b_type, c_type);
- return megdnn::matmul::GemmInterleaved<
- x86::matmul::sgemm_nopack_8x8_avx2, false>(
- m, n, k, trans_a, trans_b, strategy)
- .get_workspace_size();
- }
- MIDOUT_END();
- }
-
- /*************************AlgoFloatAVX2M6N16********************/
- MatrixMulImpl::kern_t MatrixMulImpl::AlgoFloatAVX2M6N16::get_kern(
- const KernSizeParam&) const {
- return gemm_f32_avx2_6x16;
- }
- bool MatrixMulImpl::AlgoFloatAVX2M6N16::usable(
- const KernSizeParam& kern_size_param) const {
- bool is_param_ok =
- kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
- ((kern_size_param.A_type.enumv() == DTypeEnum::Float32 &&
- kern_size_param.C_type.enumv() == DTypeEnum::Float32)) &&
- kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
- kern_size_param.format == Param::Format::DEFAULT &&
- is_supported(SIMDType::AVX2);
- return is_param_ok;
- }
- size_t MatrixMulImpl::AlgoFloatAVX2M6N16::get_workspace(
- const KernSizeParam& kern_param) const {
- constexpr int cacheline = 64;
- const size_t m = kern_param.M;
- const size_t n = kern_param.N;
- const size_t k = kern_param.K;
- const bool trans_a = kern_param.trA;
- const bool trans_b = kern_param.trB;
- auto a_type = kern_param.A_type;
- auto b_type = kern_param.B_type;
- auto c_type = kern_param.C_type;
- x86::matmul::sgemm_pack_6x16_avx2 strategy(m, n, k, a_type, b_type,
- c_type);
-
- return megdnn::matmul::GemmInterleaved<
- x86::matmul::sgemm_pack_6x16_avx2>(
- m, n, k, trans_a, trans_b, strategy, cacheline)
- .get_workspace_size();
- }
-
- MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(
- AlgoFloatAVX2M6N16, megdnn_x86_matmul_kern,
- "AlgoFloatAVX2M6N16"_hash, x86::matmul::sgemm_pack_6x16_avx2,
- float, float, float, AlgoDataType::FLOAT32, DEFAULT);
-
- // vim: syntax=cpp.doxygen
|