|
- import numpy as np
-
- import megengine as mge
- import megengine.functional as F
- from megengine import Parameter
-
- from .init import ones_, zeros_
- from .module import Module
-
-
- class GroupNorm(Module):
- """Simple implementation of GroupNorm. Only support 4d tensor now.
- Reference: https://arxiv.org/pdf/1803.08494.pdf.
- """
-
- def __init__(self, num_groups, num_channels, eps=1e-5, affine=True, **kwargs):
- super().__init__(**kwargs)
- assert num_channels % num_groups == 0
- self.num_groups = num_groups
- self.num_channels = num_channels
- self.eps = eps
- self.affine = affine
- if self.affine:
- self.weight = Parameter(np.ones(num_channels, dtype=np.float32))
- self.bias = Parameter(np.zeros(num_channels, dtype=np.float32))
- else:
- self.weight = None
- self.bias = None
- self.reset_parameters()
-
- def reset_parameters(self):
- if self.affine:
- ones_(self.weight)
- zeros_(self.bias)
-
- def forward(self, x):
- x = F.nn.group_norm(
- x, self.num_groups, self.affine, self.weight, self.bias, self.eps
- )
- return x
-
- def _module_info_string(self) -> str:
- s = (
- "groups={num_groups}, channels={num_channels}, "
- "eps={eps}, affine={affine}"
- )
- return s.format(**self.__dict__)
-
-
- class InstanceNorm(Module):
- """Simple implementation of InstanceNorm. Only support 4d tensor now.
- Reference: https://arxiv.org/abs/1607.08022.
- Note that InstanceNorm equals using GroupNome with num_groups=num_channels.
- """
-
- def __init__(self, num_channels, eps=1e-05, affine=True, **kwargs):
- super().__init__(**kwargs)
- self.num_channels = num_channels
- self.eps = eps
- self.affine = affine
- if self.affine:
- self.weight = Parameter(np.ones(num_channels, dtype="float32"))
- self.bias = Parameter(np.zeros(num_channels, dtype="float32"))
- else:
- self.weight = None
- self.bias = None
- self.reset_parameters()
-
- def reset_parameters(self):
- if self.affine:
- ones_(self.weight)
- zeros_(self.bias)
-
- def forward(self, x):
- N, C, H, W = x.shape
- format = x.format
- assert C == self.num_channels
- x = x.reshape(N, C, -1)
- mean = x.mean(axis=2, keepdims=True)
- var = (x ** 2).mean(axis=2, keepdims=True) - mean * mean
-
- x = (x - mean) / F.sqrt(var + self.eps)
- x = x.reshape(N, C, H, W)
- if self.affine:
- x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1)
- # FIXME(czh): remove this after making it a builtin op.
- if format == "nhwc":
- x = mge.amp.convert_tensor_format(x, inplace=False)
- return x
-
- def _module_info_string(self) -> str:
- s = "channels={num_channels}, eps={eps}, affine={affine}"
- return s.format(**self.__dict__)
-
-
- class LayerNorm(Module):
- """Simple implementation of LayerNorm. Support tensor of any shape as input.
- Reference: https://arxiv.org/pdf/1803.08494.pdf.
- """
-
- def __init__(self, normalized_shape, eps=1e-05, affine=True, **kwargs):
- super().__init__(**kwargs)
- if isinstance(normalized_shape, int):
- normalized_shape = (normalized_shape,)
- self.normalized_shape = tuple(normalized_shape)
- self.eps = eps
- self.affine = affine
- if self.affine:
- self.weight = Parameter(np.ones(self.normalized_shape, dtype="float32"))
- self.bias = Parameter(np.zeros(self.normalized_shape, dtype="float32"))
- else:
- self.weight = None
- self.bias = None
-
- self.reset_parameters()
-
- def reset_parameters(self):
- if self.affine:
- ones_(self.weight)
- zeros_(self.bias)
-
- def forward(self, x):
- x = F.nn.layer_norm(
- x, self.normalized_shape, self.affine, self.weight, self.bias, self.eps
- )
- return x
-
- def _module_info_string(self) -> str:
- s = "normalized_shape={normalized_shape}, eps={eps}, affine={affine}"
- return s.format(**self.__dict__)
|