|
- /**
- g * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "src/fallback/conv_bias/opr_impl.h"
- #include "src/common/algo_chooser.h"
- #include "src/common/metahelper.h"
- #include "src/common/opr_delegate.h"
- #include "src/common/utils.h"
- #include "src/fallback/conv_bias/algos.h"
- #include "src/fallback/conv_bias/conv1x1/algos.h"
- #include "src/fallback/conv_bias/conv1x1/algos_conv1x1_gemv.h"
- #include "src/fallback/conv_bias/im2col/algos.h"
- #include "src/fallback/convolution/opr_impl.h"
- #include "src/naive/convolution/algorithms.h"
- #include "src/naive/handle.h"
-
- #if MEGDNN_X86
- #include "src/x86/conv_bias/opr_impl.h"
- #elif MEGDNN_AARCH64
- #include "src/aarch64/conv_bias/opr_impl.h"
- #elif MEGDNN_ARMV7
- #include "src/armv7/conv_bias/opr_impl.h"
- #endif
-
- #include <cstring>
-
- using namespace megdnn;
- using namespace fallback;
-
- size_t megdnn::fallback::pack_size(param::ConvBias::Format format) {
- switch (format) {
- case param::ConvBias::Format::NCHW44:
- case param::ConvBias::Format::NCHW44_DOT:
- case param::ConvBias::Format::NCHW4:
- return 4_z;
- case param::ConvBias::Format::NCHW88:
- return 8_z;
- default:
- return 1_z;
- }
- }
-
- namespace {
- template <typename T>
- void incr_ptr(T*& dst, ptrdiff_t delta) {
- dst = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(dst) + delta);
- }
-
- } // namespace
-
- #if MEGDNN_X86
- #define SKIP_GEMV()
- //! As we haven't direct conv for int8x8x16 yet, if we disable gemv here, it may
- //! fallback to naive implementation, which may cause performance very low, so
- //! here we just enable im2col for gemv in x86 backend.
- //! FIXME: remove it when we add direct conv support for int8x8x16
- #else
- #define SKIP_GEMV() \
- if (algo->algoset() == MatrixMulImpl::AlgoBase::AlgoSet::ALGO_TYPE_GEMV) { \
- continue; \
- }
- #endif
-
- class ConvBiasImpl::AlgoPack : NonCopyableObj {
- AlgoNaive algo_naive;
- SmallVector<std::unique_ptr<AlgoBase>> refhold;
- SmallVector<AlgoBase*> m_all_algos;
- AlgoBase::Mapper m_all_algos_map;
-
- public:
- AlgoPack() {
- refhold.emplace_back(new AlgoConv1x1Gemv());
- m_all_algos.emplace_back(refhold.back().get());
-
- static CpuOprDelegationStorage<> storage;
- auto matmul_opr = storage.get<MatrixMul>();
- auto&& matmul_algos = static_cast<fallback::MatrixMulImpl*>(matmul_opr)
- ->get_all_packed_algo();
- for (auto&& algo : matmul_algos) {
- #if MEGDNN_X86
- //! As we haven't direct conv for int8x8x16 yet, if we disable gemv here, it may
- //! fallback to naive implementation, which may cause performance very low, so
- //! here we just enable im2col for gemv in x86 backend.
- //! FIXME: remove it when we add direct conv support for int8x8x16
- #else
- if (algo->algoset() == MatrixMulImpl::AlgoBase::AlgoSet::ALGO_TYPE_GEMV) {
- continue;
- }
- #endif
-
- //! As we haven't riscv64 postprocess yet, im2col and conv1x1 can not pass ci
- //! test. so we just disable all im2col and conv1x1 in riscv64
- //! FIXME: remove it when impl postprocess for riscv64
- #if !MEGDNN_RISCV64
- for (size_t ohw_tile_size : {192, 384, 96, 48, 24}) {
- refhold.emplace_back(new AlgoIm2col(
- static_cast<MatrixMulImpl::AlgoBase*>(algo), ohw_tile_size));
- m_all_algos.emplace_back(refhold.back().get());
- }
- for (size_t oc_tile_size : {48, 24}) {
- refhold.emplace_back(new AlgoConv1x1(
- static_cast<MatrixMulImpl::AlgoBase*>(algo), oc_tile_size));
- m_all_algos.emplace_back(refhold.back().get());
- }
- #endif
-
- #if 0
- //! As these algos maybe very slow, it will make fastrun search slow, so
- //! we disable it, but for the test of strategyhelper, we just keep it.
- //! FIXME: I do not know a better way to do it.
- refhold.emplace_back(new AlgoWinogradF32(
- static_cast<MatrixMulImpl::AlgoBase*>(algo)));
- m_all_algos.emplace_back(refhold.back().get());
- refhold.emplace_back(new AlgoWinogradF32_4x4(
- static_cast<MatrixMulImpl::AlgoBase*>(algo)));
- m_all_algos.emplace_back(refhold.back().get());
- refhold.emplace_back(new AlgoWinogradQS8(
- static_cast<MatrixMulImpl::AlgoBase*>(algo)));
- m_all_algos.emplace_back(refhold.back().get());
- refhold.emplace_back(new AlgoWinogradQS8_8x8(
- static_cast<MatrixMulImpl::AlgoBase*>(algo)));
- m_all_algos.emplace_back(refhold.back().get());
- #endif
- }
- m_all_algos.emplace_back(&algo_naive);
-
- for (auto&& algo : m_all_algos) {
- m_all_algos_map.emplace(algo->info().desc, algo);
- }
- }
- const SmallVector<AlgoBase*>& all_algos() const { return m_all_algos; }
- const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; }
- };
-
- const ConvBiasImpl::AlgoPack& ConvBiasImpl::algo_pack() {
- static AlgoPack algo_pack;
- return algo_pack;
- }
-
- SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::get_all_packed_algo() {
- return algo_pack().all_algos();
- }
-
- SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::select_algo_type(
- ConvAlgoTypePack target_type) {
- megdnn_assert(
- nr_type_contain(target_type.data_type),
- "ConvBias algo selection only support one type");
- SmallVector<ConvBiasImpl::AlgoBase*> algos;
- for (auto&& algo : get_all_packed_algo()) {
- auto algo_type = algo->get_algo_type();
- if (contain_data_type(algo_type.data_type, target_type.data_type) &&
- algo_type.algo_category == target_type.algo_category) {
- algos.push_back(algo);
- }
- }
- return algos;
- }
-
- bool ConvBiasImpl::is_naive_algo(ConvBiasImpl::Algorithm* algo) {
- return algo == nullptr || strcmp(algo->name(), "DEFAULT") == 0;
- }
-
- #define NCB_ALGO_FUNC(name, algo, param) static_cast<AlgoBase*>(algo)->name(param)
-
- void ConvBiasImpl::exec(
- _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
- _megdnn_tensor_in z, _megdnn_tensor_out dst,
- const PreprocessedFilter* preprocessed_filter, _megdnn_workspace workspace) {
- check_exec(
- src.layout, filter.layout, bias.layout, z.layout, dst.layout,
- workspace.size, preprocessed_filter);
- auto fparam =
- make_ncb_kern_param(src, filter, bias, dst, workspace, preprocessed_filter);
- auto&& algo = get_algorithm(fparam, workspace.size);
- if (!is_naive_algo(algo) &&
- NCB_ALGO_FUNC(get_workspace, algo, fparam) <= workspace.size) {
- exec_with_ncb_kern(fparam, algo);
- } else {
- naive::ConvBiasForwardImpl::exec(
- src, filter, bias, z, dst, preprocessed_filter, workspace);
- }
- }
-
- void ConvBiasImpl::exec_preprocess(
- const TensorLayout& src_layout, _megdnn_tensor_in filter,
- _megdnn_tensor_in bias, const TensorLayout& z_layout,
- const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter,
- _megdnn_workspace workspace) {
- //! exec_preprocess currently only support preprocess weights and bias
- //! before exec, src/dst/z will be ignored, just set to nullptr
- TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout};
- auto fparam =
- make_ncb_kern_param(src, filter, bias, dst, workspace, preprocessed_filter);
- //! should not pass workspace_size limit otherwise can not find match algo
- auto&& algo = get_algorithm(fparam);
- if (!is_naive_algo(algo) &&
- NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam) <= workspace.size) {
- exec_preprocess_with_ncb_kern(fparam, algo);
- } else {
- naive::ConvBiasForwardImpl::exec_preprocess(
- src_layout, filter, bias, z_layout, dst_layout, preprocessed_filter,
- workspace);
- }
- }
-
- size_t ConvBiasImpl::get_workspace_in_bytes(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst,
- const PreprocessedFilter* preprocessed_filter) {
- TensorLayoutArray layouts{src, filter, bias, z, dst};
- AlgorithmCache::Key key{this->handle(), this->get_opr_type(),
- layouts.data(), layouts.size(),
- &this->param(), sizeof(this->param())};
- auto rst = AlgorithmCache::instance().get(key);
- if (rst.policy.algo.valid()) {
- return rst.workspace;
- }
-
- auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, preprocessed_filter);
- auto&& algo = get_algorithm(fparam);
- if (is_naive_algo(algo)) {
- return naive::ConvBiasForwardImpl::get_workspace_in_bytes(
- src, filter, bias, z, dst, preprocessed_filter);
- } else {
- return NCB_ALGO_FUNC(get_workspace, algo, fparam);
- }
- }
-
- size_t ConvBiasImpl::get_preprocess_workspace_in_bytes(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst) {
- auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
- auto&& algo = get_algorithm(fparam);
- if (is_naive_algo(algo)) {
- return naive::ConvBiasForwardImpl::get_preprocess_workspace_in_bytes(
- src, filter, bias, z, dst);
- } else {
- return NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam);
- }
- }
-
- SmallVector<TensorLayout> ConvBiasImpl::deduce_preprocessed_filter_layout(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst) {
- auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
- auto&& algo = get_algorithm(fparam);
- if (is_naive_algo(algo)) {
- return naive::ConvBiasForwardImpl::deduce_preprocessed_filter_layout(
- src, filter, bias, z, dst);
- } else {
- return NCB_ALGO_FUNC(deduce_preprocessed_filter_layout, algo, fparam);
- }
- }
-
- std::vector<ConvBiasImpl::Algorithm*> ConvBiasImpl::get_all_algorithms(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst) {
- auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
- auto ret = get_all_algorithms_with_ncb(fparam);
- if (ret.empty()) {
- return naive::ConvBiasForwardImpl::get_all_algorithms_safe(
- src, filter, bias, z, dst);
- }
- return ret;
- }
- std::vector<ConvBiasImpl::Algorithm*> ConvBiasImpl::get_all_algorithms_safe(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst) {
- auto ret_safe = ConvBiasImpl::get_all_algorithms(src, filter, bias, z, dst);
- return ret_safe;
- }
-
- ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_heuristic(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst, size_t workspace_limit_in_bytes,
- const AlgoAttribute& positive_attr, const AlgoAttribute& negative_attr) {
- auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
- auto result = get_algorithm_heuristic_with_ncb(
- fparam, workspace_limit_in_bytes, positive_attr, negative_attr);
- if (result == nullptr) {
- result = naive::ConvBiasForwardImpl::get_algorithm_heuristic(
- src, filter, bias, z, dst, workspace_limit_in_bytes, positive_attr,
- negative_attr);
- }
- return result;
- }
-
- ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_heuristic_with_ncb(
- const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
- const AlgoAttribute& positive_attr, const AlgoAttribute& negative_attr) {
- if (ConvBiasImpl::param().format == Param::Format::NHWCD4) {
- return nullptr;
- }
- auto algo_data_type = param.deduce_algo_data_type();
- auto suggest_category_order = suggest_algo_category_order(param);
- for (auto category : suggest_category_order) {
- auto&& origin_algos = select_algo_type({algo_data_type, category});
- ConvBiasImpl::Algorithm* heuristic_algo = nullptr;
- for (auto i : origin_algos) {
- bool usable_attribute = static_cast<AlgoBase*>(i)->usable_attribute(
- param, AlgoSelectionStrategy::HEURISTIC, positive_attr,
- negative_attr);
- if (usable_attribute && static_cast<AlgoBase*>(i)->get_workspace(param) <=
- workspace_limit_in_bytes) {
- //! store the first usable algo if no prefer algo, choose it as
- //! the target algo
- if (!heuristic_algo) {
- heuristic_algo = i;
- }
- //! choose the first prefer algo
- if (i->is_preferred(param)) {
- return i;
- }
- }
- }
- if (heuristic_algo) {
- return heuristic_algo;
- }
- }
- return nullptr;
- }
-
- ConvBiasImpl::NCBKernSizeParam ConvBiasImpl::make_ncb_kern_size_param(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter) {
- auto safe_u32 = [](size_t v) -> uint32_t {
- megdnn_assert(
- v <= std::numeric_limits<uint32_t>::max(), "value too large: %zu", v);
- return v;
- };
- size_t spatial_pos;
- if (param().format == Param::Format::NCHW88 ||
- param().format == Param::Format::NCHW8 ||
- param().format == Param::Format::NCHW4 ||
- param().format == Param::Format::NCHW44 ||
- param().format == Param::Format::NCHW44_DOT ||
- param().format == Param::Format::NCHW ||
- param().format == Param::Format::NCHW32 ||
- param().format == Param::Format::NCHW64) {
- spatial_pos = 2;
- } else if (
- param().format == Param::Format::NHWC ||
- param().format == Param::Format::NHWCD4) {
- spatial_pos = 1;
- } else {
- megdnn_assert(0, "invalid conv format %d", static_cast<int>(param().format));
- }
- BiasMode bias_mode;
- if (bias.ndim == 0) {
- bias_mode = BiasMode::NO_BIAS;
- } else if (bias.eq_shape(dst)) {
- bias_mode = BiasMode::BIAS;
- } else {
- //! just check the ndim, the detail shape check is in check_exec
- megdnn_assert(bias.ndim == dst.ndim);
- bias_mode = BiasMode::BROADCAST_CHANNEL_BIAS;
- }
-
- static_assert(
- sizeof(CanonizedFilterMeta) == sizeof(ConvolutionImpl::CanonizedFilterMeta),
- "sizeof CanonizedFilterMeta in convolution and conv_bias "
- "should be equal");
- auto&& fm = check_layout_fwd(src, filter, dst);
- auto& conv_fm = reinterpret_cast<ConvolutionImpl::CanonizedFilterMeta&>(fm);
-
- size_t nr_threads = static_cast<naive::HandleImpl*>(handle())
- ->megcore_dispatcher()
- ->nr_threads();
- return {{safe_u32(src[0]),
- {{safe_u32(src[spatial_pos]), safe_u32(src[spatial_pos + 1])}},
- {{safe_u32(dst[spatial_pos]), safe_u32(dst[spatial_pos + 1])}},
- conv_fm,
- src.dtype,
- filter.dtype,
- dst.dtype,
- src.stride[0],
- dst.stride[0],
- {src.stride[0], src.stride[1], src.stride[2], src.stride[3]},
- {dst.stride[0], dst.stride[1], dst.stride[2], dst.stride[3]},
- param().compute_mode,
- nr_threads,
- reinterpret_cast<const ConvolutionForward::PreprocessedFilter*>(
- preprocessed_filter)},
- bias.dtype,
- bias.stride[0],
- bias_mode,
- param().nonlineMode};
- }
-
- ConvBiasImpl::NCBKernParam ConvBiasImpl::make_ncb_kern_param(
- _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
- _megdnn_tensor_out dst, _megdnn_workspace workspace,
- const PreprocessedFilter* preprocessed_filter) {
- NCBKernParam ret;
- static_cast<NCBKernSizeParam&>(ret) = make_ncb_kern_size_param(
- src.layout, filter.layout, bias.layout, dst.layout, preprocessed_filter);
- ret.src_ptr = src.get_ref_ptr();
- ret.filter_ptr = filter.get_ref_ptr();
- ret.bias_ptr = bias.get_ref_ptr();
- ret.dst_ptr = dst.get_ref_ptr();
- ret.workspace_ptr = workspace.raw_ptr;
- ret.workspace_size = workspace.size;
- return ret;
- }
-
- void ConvBiasImpl::exec_with_ncb_kern(
- const NCBKernParam& param, ConvBiasImpl::Algorithm* algo) {
- auto&& ncb_kerns = NCB_ALGO_FUNC(dispatch_kerns, algo, param);
- for (auto&& kernel : ncb_kerns) {
- auto run = [kernel, param](size_t index, size_t thread_id) {
- CpuNDRange ndrange_id(kernel.global_size, index);
- kernel.kern(param, {thread_id, ndrange_id});
- };
- static_cast<naive::HandleImpl*>(handle())->dispatch_kern(
- run, kernel.global_size.total_size());
- }
- }
-
- void ConvBiasImpl::exec_preprocess_with_ncb_kern(
- const NCBKernParam& param, ConvBiasImpl::Algorithm* algo) {
- auto&& ncb_kerns = NCB_ALGO_FUNC(dispatch_preprocess_kerns, algo, param);
- for (auto&& kernel : ncb_kerns) {
- auto run = [kernel, param](size_t index, size_t thread_id) {
- CpuNDRange ndrange_id(kernel.global_size, index);
- kernel.kern(param, {thread_id, ndrange_id});
- };
- static_cast<naive::HandleImpl*>(handle())->dispatch_kern(
- run, kernel.global_size.total_size());
- }
- }
-
- std::vector<ConvBiasImpl::Algorithm*> ConvBiasImpl::get_all_algorithms_with_ncb(
- const NCBKernSizeParam& param) {
- MEGDNN_MARK_USED_VAR(param);
- std::vector<Algorithm*> algos;
- std::vector<Algorithm*> prefer_algos;
- for (auto&& algo : get_all_packed_algo()) {
- if (algo->usable(param, AlgoSelectionStrategy::FULL_RUN)) {
- if (algo->is_preferred(param)) {
- prefer_algos.push_back(algo);
- } else {
- algos.push_back(algo);
- }
- }
- }
- //! Prefer algo inserted from begin
- algos.insert(algos.begin(), prefer_algos.begin(), prefer_algos.end());
- return algos;
- }
-
- ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_from_desc(
- const AlgorithmDesc& desc) {
- if (!desc.valid()) {
- return nullptr;
- } else {
- switch (desc.handle_type) {
- case Handle::HandleType::FALLBACK: {
- const auto& map = algo_pack().all_algos_map();
- megdnn_assert(map.find(desc) != map.end());
- return map.at(desc);
- };
-
- #if MEGDNN_X86
- case Handle::HandleType::X86:
- return x86::ConvBiasImpl::get_algo_from_desc(desc);
- #elif MEGDNN_AARCH64 || MEGDNN_ARMV7
- case Handle::HandleType::ARM_COMMON:
- return arm_common::ConvBiasImpl::get_algo_from_desc(desc);
- #if MEGDNN_AARCH64
- case Handle::HandleType::AARCH64:
- return aarch64::ConvBiasImpl::get_algo_from_desc(desc);
- #else
- case Handle::HandleType::ARMV7:
- return armv7::ConvBiasImpl::get_algo_from_desc(desc);
- #endif
- #endif
- case Handle::HandleType::NAIVE: {
- auto algo = static_cast<naive::HandleImpl*>(handle())
- ->default_conv_bias_fwd_algo();
- megdnn_assert(algo->info().desc == desc);
- return algo;
- }
- default:
- megdnn_throw("Unknown handle type");
- return nullptr;
- }
- }
- }
-
- ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm(
- const NCBKernSizeParam& param, size_t workspace_size) {
- if (ConvBiasImpl::param().format == Param::Format::NHWCD4) {
- return nullptr;
- }
- if (auto algo = get_algorithm_from_desc(execution_policy().algo)) {
- return algo;
- }
- if (!m_prev_selected_algo ||
- memcmp(&m_prev_selected_algo_sizep, ¶m, sizeof(NCBKernSizeParam))) {
- m_prev_selected_algo = get_algorithm_heuristic_with_ncb(
- param, workspace_size, AlgoAttribute::DEFAULT, AlgoAttribute::DEFAULT);
- m_prev_selected_algo_sizep = param;
- }
- return m_prev_selected_algo;
- }
-
- SmallVector<AlgoCategory> ConvBiasImpl::suggest_algo_category_order(
- const NCBKernSizeParam& param) const {
- auto IC = param.filter_meta.icpg;
- auto OC = param.filter_meta.ocpg;
- auto FH = param.filter_meta.spatial[0];
- auto FW = param.filter_meta.spatial[1];
- //! TODO: now winograd only support in fast-run
-
- //! im2col + matmul
- bool im2col_prefer = (IC >= 32 || OC >= 32);
- //! quantized algo use matmul when direct algo is unusable
- if (param.src_type.category() == DTypeCategory::QUANTIZED) {
- im2col_prefer = is_matmul_quantized_prefer(param);
- }
- //! conv1x1
- im2col_prefer |= (FH == 1 && FW == 1);
- if (im2col_prefer) {
- return {AlgoCategory::IM2COL, AlgoCategory::DIRECT, AlgoCategory::NAIVE};
- } else {
- return {AlgoCategory::DIRECT, AlgoCategory::IM2COL, AlgoCategory::NAIVE};
- }
- }
-
- const char* ConvBiasImpl::get_algorithm_set_name() const {
- // fallback version 0
- return "F0";
- }
-
- namespace megdnn {
- namespace fallback {
-
- size_t ConvBiasImpl::NCBKernParam::src_offset(
- size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
- size_t group_pack_size, size_t channel_pack_size) const {
- size_t batch_offset = batch_id * inp_bs * src_type.size();
- size_t group_offset = group_pack_size * group_pack_id * filter_meta.icpg * isz[0] *
- isz[1] * src_type.size();
- size_t channel_offset =
- channel_pack_size * channel_pack_id * isz[0] * isz[1] * src_type.size();
- return (batch_offset + group_offset + channel_offset);
- }
-
- template <typename T>
- const T* ConvBiasImpl::NCBKernParam::src(
- size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
- size_t group_pack_size, size_t channel_pack_size) const {
- return reinterpret_cast<T*>(
- reinterpret_cast<ptrdiff_t>(src_ptr.get_ptr()) +
- src_offset(
- batch_id, group_pack_id, channel_pack_id, group_pack_size,
- channel_pack_size));
- }
-
- size_t ConvBiasImpl::NCBKernParam::filter_offset(
- size_t group_pack_id, size_t pack_group_size) const {
- size_t group_offset = 0_z;
- switch (filter_meta.format) {
- case Param::Format::NCHW: {
- group_offset = pack_group_size * group_pack_id * filter_meta.icpg *
- filter_meta.ocpg * filter_meta.spatial[0] *
- filter_meta.spatial[1] * filter_type.size();
- break;
- }
- case Param::Format::NCHW88: {
- size_t group = filter_meta.group;
- size_t icpg = filter_meta.icpg;
- size_t ocpg = filter_meta.ocpg;
- //! four format of weight layout
- //! 1. {oc/8, ic/8, fh, fw, 8, 8},
- //! 2. {g, oc/8, ic/8, fh, fw, 8, 8},
- //! 3. {g/8, fh, fw, 1, 1, 8}, 4. {oc/8, fh, fw, ic, 8}
- megdnn_assert(
- (icpg % 8 == 0 && ocpg % 8 == 0) ||
- (group % 8 == 0 && icpg == 1 && ocpg == 1 &&
- pack_group_size > 1) ||
- (group == 1 && ocpg % 8 == 0),
- "The filter shepe is not right of nchw88");
- group_offset = pack_group_size * group_pack_id * filter_meta.icpg *
- filter_meta.ocpg * filter_meta.spatial[0] *
- filter_meta.spatial[1] * filter_type.size();
-
- break;
- }
- case Param::Format::NCHW44_DOT:
- case Param::Format::NCHW44: {
- size_t group = filter_meta.group;
- size_t icpg = filter_meta.icpg;
- size_t ocpg = filter_meta.ocpg;
- //! four format of weight layout
- //! 1. {oc/4, ic/4, fh, fw, 4, 4},
- //! 2. {g, oc/4, ic/4, fh, fw, 4, 4},
- //! 3. {g/4, fh, fw, 1, 1, 4},
- //! 4. {oc/4, fh, fw, ic, 4}
- megdnn_assert(
- (icpg % 4 == 0 && ocpg % 4 == 0) ||
- (group % 4 == 0 && icpg == 1 && ocpg == 1 &&
- pack_group_size > 1) ||
- (group == 1 && ocpg % 4 == 0),
- "The filter shepe is not right of nchw44");
- group_offset = pack_group_size * group_pack_id * filter_meta.icpg *
- filter_meta.ocpg * filter_meta.spatial[0] *
- filter_meta.spatial[1] * filter_type.size();
-
- break;
- }
- default:
- megdnn_assert(0, "other filter format is not support yet");
- }
- return group_offset;
- }
-
- template <typename T>
- const T* ConvBiasImpl::NCBKernParam::filter(
- size_t group_pack_id, size_t pack_group_size) const {
- size_t group_offset = filter_offset(group_pack_id, pack_group_size);
- return reinterpret_cast<T*>(
- reinterpret_cast<ptrdiff_t>(filter_ptr.get_ptr()) + group_offset);
- }
-
- size_t ConvBiasImpl::NCBKernParam::bias_offset(
- size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
- size_t group_pack_size, size_t channel_pack_size) const {
- size_t batch_offset = 0_z;
- size_t group_offset = 0_z;
- size_t channel_offset = 0_z;
- if (bias_mode == BiasMode::BIAS) {
- batch_offset = batch_id * bias_bs * bias_type.size();
- group_offset = group_pack_size * group_pack_id * filter_meta.ocpg * osz[0] *
- osz[1] * bias_type.size();
- channel_offset = channel_pack_size * channel_pack_id * osz[0] * osz[1] *
- bias_type.size();
- } else if (bias_mode == BiasMode::BROADCAST_CHANNEL_BIAS) {
- group_offset =
- group_pack_size * group_pack_id * filter_meta.ocpg * bias_type.size();
- channel_offset = channel_pack_size * channel_pack_id * bias_type.size();
- }
- return (batch_offset + group_offset + channel_offset);
- }
-
- template <typename T>
- const T* ConvBiasImpl::NCBKernParam::bias(
- size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
- size_t group_pack_size, size_t channel_pack_size) const {
- return reinterpret_cast<T*>(
- reinterpret_cast<ptrdiff_t>(bias_ptr.get_ptr()) +
- bias_offset(
- batch_id, group_pack_id, channel_pack_id, group_pack_size,
- channel_pack_size));
- }
-
- size_t ConvBiasImpl::NCBKernParam::dst_offset(
- size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
- size_t group_pack_size, size_t channel_pack_size) const {
- size_t batch_offset = batch_id * out_bs * dst_type.size();
- size_t group_offset = group_pack_size * group_pack_id * filter_meta.ocpg * osz[0] *
- osz[1] * dst_type.size();
- size_t channel_offset =
- channel_pack_size * channel_pack_id * osz[0] * osz[1] * dst_type.size();
- return (batch_offset + group_offset + channel_offset);
- }
-
- template <typename T>
- T* ConvBiasImpl::NCBKernParam::dst(
- size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
- size_t group_pack_size, size_t channel_pack_size) const {
- return reinterpret_cast<T*>(
- reinterpret_cast<ptrdiff_t>(dst_ptr.get_ptr()) +
- dst_offset(
- batch_id, group_pack_id, channel_pack_id, group_pack_size,
- channel_pack_size));
- }
-
- #define INST(T) \
- template const T* ConvBiasImpl::NCBKernParam::src<T>( \
- size_t batch_id, size_t group_id, size_t channel_id, \
- size_t group_pack_size, size_t channel_pack_size) const; \
- template const T* ConvBiasImpl::NCBKernParam::bias<T>( \
- size_t batch_id, size_t group_id, size_t channel_id, \
- size_t group_pack_size, size_t channel_pack_size) const; \
- template const T* ConvBiasImpl::NCBKernParam::filter<T>( \
- size_t group_id, size_t group_pack_size) const; \
- template T* ConvBiasImpl::NCBKernParam::dst<T>( \
- size_t batch_id, size_t group_id, size_t channel_id, \
- size_t group_pack_size, size_t channel_pack_size) const;
-
- #define INST_DT(d) INST(DTypeTrait<d>::ctype)
-
- MEGDNN_FOREACH_COMPUTING_DTYPE(INST_DT)
- INST(void)
- #undef INST
- #undef INST_DT
- } // namespace fallback
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|