|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import threading
-
- import numpy as np
-
- from .base import *
- from .struct import *
- from .tensor import *
-
-
- class TensorBatchCollector:
- """
- this is a tensor utils to collect subtensor in batch continuous
- """
-
- def __init__(
- self,
- shape,
- dtype=LiteDataType.LITE_INT8,
- device_type=LiteDeviceType.LITE_CUDA,
- device_id=0,
- is_pinned_host=False,
- tensor=None,
- ):
- self._mutex = threading.Lock()
- self.dev_type = device_type
- self.is_pinned_host = is_pinned_host
- self.dev_id = 0
- self.shape = shape
- self.dtype = LiteLayout(dtype=dtype).data_type
- self._free_list = list(range(self.shape[0]))
-
- if tensor is not None:
- assert (
- tensor.layout.shapes[0 : tensor.layout.ndim] == shape
- ), "The tensor set to TensorBatchCollector is not right."
- self._tensor = tensor
- self.dtype = tensor.layout.data_type
- self.device_type = tensor.device_type
- self.device_id = tensor.device_type
- else:
- self._tensor = LiteTensor(
- LiteLayout(shape, dtype), device_type, device_id, is_pinned_host
- )
-
- def collect_id(self, array, batch_id):
- if isinstance(array, np.ndarray):
- shape = array.shape
- assert list(shape) == self.shape[1:]
- in_dtype = ctype_to_lite_dtypes[np.ctypeslib.as_ctypes_type(array.dtype)]
- assert in_dtype == self.dtype
- # get the batch index
- with self._mutex:
- if batch_id in self._free_list:
- self._free_list.remove(batch_id)
- # get the subtensor
- subtensor = self._tensor.slice([batch_id], [batch_id + 1])
- if subtensor.device_type == LiteDeviceType.LITE_CPU:
- subtensor.set_data_by_copy(array)
- else:
- pinned_tensor = LiteTensor(
- subtensor.layout, self.dev_type, self.dev_id, True
- )
- pinned_tensor.set_data_by_share(array)
- subtensor.copy_from(pinned_tensor)
- else:
- assert isinstance(array, LiteTensor)
- ndim = array.layout.ndim
- shape = list(array.layout.shapes)[0:ndim]
- assert list(shape) == self.shape[1:]
- in_dtype = array.layout.data_type
- assert in_dtype == self.dtype
- # get the batch index
- with self._mutex:
- if batch_id in self._free_list:
- self._free_list.remove(batch_id)
- # get the subtensor
- subtensor = self._tensor.slice([batch_id], [batch_id + 1])
- subtensor.copy_from(array)
-
- return batch_id
-
- def collect(self, array):
- with self._mutex:
- if len(self._free_list) == 0:
- return -1
- idx = self._free_list.pop(0)
- return self.collect_id(array, idx)
-
- def collect_by_ctypes(self, data, length):
- """
- collect with ctypes data input
- """
- with self._mutex:
- if len(self._free_list) == 0:
- return -1
- idx = self._free_list.pop(0)
- # get the subtensor
- subtensor = self._tensor.slice([idx], [idx + 1])
- if subtensor.device_type == LiteDeviceType.LITE_CPU:
- subtensor.set_data_by_copy(data, length)
- else:
- pinned_tensor = LiteTensor(
- subtensor.layout, self.dev_type, self.dev_id, True
- )
- pinned_tensor.set_data_by_share(data, length)
- subtensor.copy_from(pinned_tensor)
-
- def free(self, indexes):
- with self._mutex:
- self._free_list.extend(indexes)
-
- def get(self):
- return self._tensor
-
- def to_numpy(self):
- return self._tensor.to_numpy()
|