|
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import numpy as np
- import pytest
-
- from megengine import module as Float
- from megengine import tensor
- from megengine.module import qat as QAT
- from megengine.quantization import min_max_fakequant_qconfig
- from megengine.quantization.quantize import (
- _get_quantable_module_names,
- disable_fake_quant,
- quantize_qat,
- )
-
-
- def test_get_quantable_module_names():
- # need to make sure names from Quantized and QAT are the same
- def _get_qat_module_names():
- def is_qat(key: str):
- value = getattr(QAT, key)
- return (
- isinstance(value, type)
- and issubclass(value, QAT.QATModule)
- and value != QAT.QATModule
- )
-
- # source should have all quantable modules' names
- quantable_module_names = [key for key in dir(QAT) if is_qat(key)]
- return quantable_module_names
-
- qat_module_names = _get_qat_module_names()
- quantized_module_names = _get_quantable_module_names()
- assert set(qat_module_names) == set(quantized_module_names)
-
- for key in qat_module_names:
- value = getattr(Float, key)
- assert (
- isinstance(value, type)
- and issubclass(value, Float.Module)
- and value != Float.Module
- )
-
-
- def test_disable_quantize():
- class Net(Float.Module):
- def __init__(self):
- super().__init__()
- self.conv = Float.ConvBnRelu2d(3, 3, 3)
- self.conv.disable_quantize()
-
- def forward(self, x):
- return self.conv(x)
-
- net = Net()
- qat_net = quantize_qat(net, inplace=False)
- assert isinstance(qat_net.conv, Float.ConvBnRelu2d)
- assert isinstance(qat_net.conv.conv, Float.Conv2d)
-
-
- def test_convert_with_custom_mapping():
- class FloatExample(Float.Module):
- def forward(self, x):
- return x
-
- class QATExample(QAT.QATModule):
- def forward(self, x):
- return x
-
- @classmethod
- def from_float_module(cls, float_module):
- return cls()
-
- class Net(Float.Module):
- def __init__(self):
- super().__init__()
- self.example = FloatExample()
-
- def forward(self, x):
- return self.example(x)
-
- net = Net()
- qat_net = quantize_qat(net, inplace=False, mapping={FloatExample: QATExample})
- assert isinstance(qat_net.example, QATExample)
-
-
- def test_disable_fake_quant():
- class Net(Float.Module):
- def __init__(self):
- super().__init__()
- self.quant = Float.QuantStub()
- self.linear = Float.Linear(3, 3)
- self.dequant = Float.DequantStub()
- self.linear.bias.set_value(np.random.rand(3))
-
- def forward(self, x):
- x = self.quant(x)
- x = self.linear(x)
- x = self.dequant(x)
- return x
-
- x = tensor(np.random.randint(1, 10, size=(3, 3)).astype(np.float32))
- net = Net()
- y1 = net(x).numpy()
- net = quantize_qat(net, min_max_fakequant_qconfig)
- y2 = net(x).numpy()
- disable_fake_quant(net)
- y3 = net(x).numpy()
- np.testing.assert_allclose(y1, y3)
- with pytest.raises(AssertionError):
- np.testing.assert_allclose(y2, y3)
|