吴恩达(Andrew Ng)机器学习公开课中文笔记

电子版笔记基于手写笔记,时间有限再加上为了追求清晰精确,更新较慢请大佬们谅解😭。

码的很辛苦,大佬们如果觉得笔记整理的还不错,记得保持关注,也欢迎分享哦。

感谢支持(*^_^*)。

有打赏需求的大佬们,支付宝账号即为 GitHub 主页邮箱--,嗯……应该没有吧。

GitHub 项目首页 | 知乎文章

 

week1

  1. 引言(Introduction)
  2. 单变量线性回归(Linear Regression with One Variable)

week2

  1. 线性代数回顾(Linear Algebra Review)
  2. 多变量线性回归(Linear Regression with Multiple Variables)
  3. Octave/Matlab 指南(Octave/Matlab Tutorial)

week3

  1. 逻辑回归(Logistic Regression)
  2. 正则化(Regularization)

week4

  1. 神经网络:表达(Neural Networks: Representation)

week5

  1. 神经网络:学习(Neural Networks: Learning)

week6

  1. 机器学习应用的建议(Advice for Applying Machine Learning)
  2. 机器学习系统设计(Machine Learning System Design)

week7

  1. 支持向量机(Support Vector Machines)

week8

  1. 无监督学习(Unsupervised Learning)
  2. 降维(Dimensionality Reduction)

week9

  1. 异常检测(Anomaly Detection)
  2. 推荐系统(Recommender Systems)

week10

  1. 大规模机器学习(Large Scale Machine Learning)

week11

  1. 实战:图像光学识别(Application Example: Photo OCR)

 

 

License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

By: Scruel