%% Machine Learning Online Class % Exercise 1: Linear regression with multiple variables % % Instructions % ------------ % % This file contains code that helps you get started on the % linear regression exercise. % % You will need to complete the following functions in this % exericse: % % warmUpExercise.m % plotData.m % gradientDescent.m % computeCost.m % gradientDescentMulti.m % computeCostMulti.m % featureNormalize.m % normalEqn.m % % For this part of the exercise, you will need to change some % parts of the code below for various experiments (e.g., changing % learning rates). % %% Initialization %% ================ Part 1: Feature Normalization ================ %% Clear and Close Figures clear ; close all; clc fprintf('Loading data ...\n'); %% Load Data data = load('ex1data2.txt'); X = data(:, 1:2); y = data(:, 3); m = length(y); % Print out some data points fprintf('First 10 examples from the dataset: \n'); fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(1:10,:) y(1:10,:)]'); fprintf('Program paused. Press enter to continue.\n'); pause; % Scale features and set them to zero mean fprintf('Normalizing Features ...\n'); [X mu sigma] = featureNormalize(X); % Add intercept term to X X = [ones(m, 1) X]; %% ================ Part 2: Gradient Descent ================ % ====================== YOUR CODE HERE ====================== % Instructions: We have provided you with the following starter % code that runs gradient descent with a particular % learning rate (alpha). % % Your task is to first make sure that your functions - % computeCost and gradientDescent already work with % this starter code and support multiple variables. % % After that, try running gradient descent with % different values of alpha and see which one gives % you the best result. % % Finally, you should complete the code at the end % to predict the price of a 1650 sq-ft, 3 br house. % % Hint: By using the 'hold on' command, you can plot multiple % graphs on the same figure. % % Hint: At prediction, make sure you do the same feature normalization. % fprintf('Running gradient descent ...\n'); % Choose some alpha value alpha = 0.001; num_iters = 4000; % Init Theta and Run Gradient Descent theta = zeros(3, 1); [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters); %[theta, J_history] = gradientDescentMulti(X, y, zeros(3, 1), 0.001, 4000); %plot(1:numel(J_history), J_history, '-bc', 'LineWidth', 2); %price = theta(1) + (1650 - mu(1)) / sigma(1) * theta(2) + (3 - mu(2)) / sigma(2) * theta(3) % You should change this %price = theta(1) + (15 - mu(1)) / sigma(1) * theta(2) + (1 - mu(2)) / sigma(2) * theta(3) + (2 - mu(3)) / sigma(3) * theta(4) % You should change this fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ... '(using gradient descent):\n $%f\n'], price); % Plot the convergence graph figure; plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2); xlabel('Number of iterations'); ylabel('Cost J'); % Display gradient descent's result fprintf('Theta computed from gradient descent: \n'); fprintf(' %f \n', theta); fprintf('\n'); % Estimate the price of a 1650 sq-ft, 3 br house % ====================== YOUR CODE HERE ====================== % Recall that the first column of X is all-ones. Thus, it does % not need to be normalized. price = 0; % You should change this % ============================================================ fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ... '(using gradient descent):\n $%f\n'], price); fprintf('Program paused. Press enter to continue.\n'); pause; %% ================ Part 3: Normal Equations ================ fprintf('Solving with normal equations...\n'); % ====================== YOUR CODE HERE ====================== % Instructions: The following code computes the closed form % solution for linear regression using the normal % equations. You should complete the code in % normalEqn.m % % After doing so, you should complete this code % to predict the price of a 1650 sq-ft, 3 br house. % %% Load Data data = csvread('ex1data2.txt'); X = data(:, 1:2); y = data(:, 3); m = length(y); % Add intercept term to X X = [ones(m, 1) X]; % Calculate the parameters from the normal equation theta = normalEqn(X, y); % Display normal equation's result fprintf('Theta computed from the normal equations: \n'); fprintf(' %f \n', theta); fprintf('\n'); % Estimate the price of a 1650 sq-ft, 3 br house % ====================== YOUR CODE HERE ====================== price = theta(1) + 1650 * theta(2) + 3 * theta(3); % You should change this % ============================================================ fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ... '(using normal equations):\n $%f\n'], price); %% ============= Part 4: Visualizing J(theta_0, theta_1) ============= fprintf('Visualizing J(theta_0, theta_1) ...\n') % Grid over which we will calculate J theta0_vals = linspace(-10, 10, 100); theta1_vals = linspace(-1, 4, 100);%从-1到4之间取100个数组成一个向量 theta2_vals = linspace(-1, 4, 100);%从-1到4之间取100个数组成一个向量 % initialize J_vals to a matrix of 0's J_vals = zeros(length(theta0_vals), length(theta1_vals), length(theta1_vals)); % Fill out J_vals for i = 1:length(theta0_vals) for j = 1:length(theta1_vals) t = [theta0_vals(i); theta1_vals(j)]; J_vals(i,j) = computeCostMulti(X, y, t); end end % Because of the way meshgrids work in the surf command, we need to % transpose J_vals before calling surf, or else the axes will be flipped J_vals = J_vals'; % Surface plot figure; surf(theta0_vals, theta1_vals, J_vals)%画出三维图形 xlabel('\theta_0'); ylabel('\theta_1'); % Contour plot 轮廓图 figure; % Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100 contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20)) xlabel('\theta_0'); ylabel('\theta_1'); hold on; plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);