
Programming Exercise 3:
Multi-class Classification and Neural Networks

Machine Learning

Introduction

In this exercise, you will implement one-vs-all logistic regression and neural
networks to recognize hand-written digits. Before starting the programming
exercise, we strongly recommend watching the video lectures and completing
the review questions for the associated topics.

To get started with the exercise, you will need to download the starter
code and unzip its contents to the directory where you wish to complete the
exercise. If needed, use the cd command in Octave/MATLAB to change to
this directory before starting this exercise.

You can also find instructions for installing Octave/MATLAB in the “En-
vironment Setup Instructions” of the course website.

Files included in this exercise

ex3.m - Octave/MATLAB script that steps you through part 1
ex3 nn.m - Octave/MATLAB script that steps you through part 2
ex3data1.mat - Training set of hand-written digits
ex3weights.mat - Initial weights for the neural network exercise
submit.m - Submission script that sends your solutions to our servers
displayData.m - Function to help visualize the dataset
fmincg.m - Function minimization routine (similar to fminunc)
sigmoid.m - Sigmoid function
[?] lrCostFunction.m - Logistic regression cost function
[?] oneVsAll.m - Train a one-vs-all multi-class classifier
[?] predictOneVsAll.m - Predict using a one-vs-all multi-class classifier
[?] predict.m - Neural network prediction function

? indicates files you will need to complete

1

Throughout the exercise, you will be using the scripts ex3.m and ex3 nn.m.
These scripts set up the dataset for the problems and make calls to functions
that you will write. You do not need to modify these scripts. You are only
required to modify functions in other files, by following the instructions in
this assignment.

Where to get help

The exercises in this course use Octave1 or MATLAB, a high-level program-
ming language well-suited for numerical computations. If you do not have
Octave or MATLAB installed, please refer to the installation instructions in
the “Environment Setup Instructions” of the course website.

At the Octave/MATLAB command line, typing help followed by a func-
tion name displays documentation for a built-in function. For example, help
plot will bring up help information for plotting. Further documentation for
Octave functions can be found at the Octave documentation pages. MAT-
LAB documentation can be found at the MATLAB documentation pages.

We also strongly encourage using the online Discussions to discuss ex-
ercises with other students. However, do not look at any source code written
by others or share your source code with others.

1 Multi-class Classification

For this exercise, you will use logistic regression and neural networks to
recognize handwritten digits (from 0 to 9). Automated handwritten digit
recognition is widely used today - from recognizing zip codes (postal codes)
on mail envelopes to recognizing amounts written on bank checks. This
exercise will show you how the methods you’ve learned can be used for this
classification task.

In the first part of the exercise, you will extend your previous implemen-
tion of logistic regression and apply it to one-vs-all classification.

1Octave is a free alternative to MATLAB. For the programming exercises, you are free
to use either Octave or MATLAB.

2

http://www.gnu.org/software/octave/doc/interpreter/
http://www.mathworks.com/help/matlab/?refresh=true

1.1 Dataset

You are given a data set in ex3data1.mat that contains 5000 training exam-
ples of handwritten digits.2 The .mat format means that that the data has
been saved in a native Octave/MATLAB matrix format, instead of a text
(ASCII) format like a csv-file. These matrices can be read directly into your
program by using the load command. After loading, matrices of the correct
dimensions and values will appear in your program’s memory. The matrix
will already be named, so you do not need to assign names to them.

% Load saved matrices from file
load('ex3data1.mat');
% The matrices X and y will now be in your Octave environment

There are 5000 training examples in ex3data1.mat, where each training
example is a 20 pixel by 20 pixel grayscale image of the digit. Each pixel is
represented by a floating point number indicating the grayscale intensity at
that location. The 20 by 20 grid of pixels is “unrolled” into a 400-dimensional
vector. Each of these training examples becomes a single row in our data
matrix X. This gives us a 5000 by 400 matrix X where every row is a training
example for a handwritten digit image.

X =

— (x(1))T —
— (x(2))T —

...
— (x(m))T —

The second part of the training set is a 5000-dimensional vector y that

contains labels for the training set. To make things more compatible with
Octave/MATLAB indexing, where there is no zero index, we have mapped
the digit zero to the value ten. Therefore, a “0” digit is labeled as “10”, while
the digits “1” to “9” are labeled as “1” to “9” in their natural order.

1.2 Visualizing the data

You will begin by visualizing a subset of the training set. In Part 1 of ex3.m,
the code randomly selects selects 100 rows from X and passes those rows
to the displayData function. This function maps each row to a 20 pixel by
20 pixel grayscale image and displays the images together. We have provided

2This is a subset of the MNIST handwritten digit dataset (http://yann.lecun.com/
exdb/mnist/).

3

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

the displayData function, and you are encouraged to examine the code to
see how it works. After you run this step, you should see an image like Figure
1.

Figure 1: Examples from the dataset

1.3 Vectorizing Logistic Regression

You will be using multiple one-vs-all logistic regression models to build a
multi-class classifier. Since there are 10 classes, you will need to train 10
separate logistic regression classifiers. To make this training efficient, it is
important to ensure that your code is well vectorized. In this section, you
will implement a vectorized version of logistic regression that does not employ
any for loops. You can use your code in the last exercise as a starting point
for this exercise.

1.3.1 Vectorizing the cost function

We will begin by writing a vectorized version of the cost function. Recall
that in (unregularized) logistic regression, the cost function is

J(θ) =
1

m

m∑
i=1

[
−y(i) log(hθ(x

(i)))− (1− y(i)) log(1− hθ(x(i)))
]
.

To compute each element in the summation, we have to compute hθ(x
(i))

for every example i, where hθ(x
(i)) = g(θTx(i)) and g(z) = 1

1+e−z is the

4

sigmoid function. It turns out that we can compute this quickly for all our
examples by using matrix multiplication. Let us define X and θ as

X =

— (x(1))T —
— (x(2))T —

...
— (x(m))T —

 and θ =

θ0
θ1
...
θn

 .
Then, by computing the matrix product Xθ, we have

Xθ =

— (x(1))T θ —
— (x(2))T θ —

...
— (x(m))T θ —

 =

— θT (x(1)) —
— θT (x(2)) —

...
— θT (x(m)) —

 .
In the last equality, we used the fact that aT b = bTa if a and b are vectors.
This allows us to compute the products θTx(i) for all our examples i in one
line of code.

Your job is to write the unregularized cost function in the file lrCostFunction.m
Your implementation should use the strategy we presented above to calcu-
late θTx(i). You should also use a vectorized approach for the rest of the
cost function. A fully vectorized version of lrCostFunction.m should not
contain any loops.

(Hint: You might want to use the element-wise multiplication operation
(.*) and the sum operation sum when writing this function)

1.3.2 Vectorizing the gradient

Recall that the gradient of the (unregularized) logistic regression cost is a
vector where the jth element is defined as

∂J

∂θj
=

1

m

m∑
i=1

(
(hθ(x

(i))− y(i))x(i)j
)
.

To vectorize this operation over the dataset, we start by writing out all

5

the partial derivatives explicitly for all θj,

∂J
∂θ0

∂J
∂θ1

∂J
∂θ2

...

∂J
∂θn

=

1

m

∑m
i=1

(
(hθ(x

(i))− y(i))x(i)0

)
∑m

i=1

(
(hθ(x

(i))− y(i))x(i)1

)
∑m

i=1

(
(hθ(x

(i))− y(i))x(i)2

)
...∑m

i=1

(
(hθ(x

(i))− y(i))x(i)n
)

=

1

m

m∑
i=1

(
(hθ(x

(i))− y(i))x(i)
)

=
1

m
XT (hθ(x)− y). (1)

where

hθ(x)− y =

hθ(x

(1))− y(1)
hθ(x

(2))− y(2)
...

hθ(x
(1))− y(m)

 .
Note that x(i) is a vector, while (hθ(x

(i))−y(i)) is a scalar (single number).
To understand the last step of the derivation, let βi = (hθ(x

(i)) − y(i)) and
observe that:

∑
i

βix
(i) =

 | | |
x(1) x(2) . . . x(m)

| | |

β1
β2
...
βm

 = XTβ,

where the values βi = (hθ(x
(i))− y(i)).

The expression above allows us to compute all the partial derivatives
without any loops. If you are comfortable with linear algebra, we encourage
you to work through the matrix multiplications above to convince yourself
that the vectorized version does the same computations. You should now
implement Equation 1 to compute the correct vectorized gradient. Once you
are done, complete the function lrCostFunction.m by implementing the
gradient.

6

Debugging Tip: Vectorizing code can sometimes be tricky. One com-
mon strategy for debugging is to print out the sizes of the matrices you
are working with using the size function. For example, given a data ma-
trix X of size 100 × 20 (100 examples, 20 features) and θ, a vector with
dimensions 20×1, you can observe that Xθ is a valid multiplication oper-
ation, while θX is not. Furthermore, if you have a non-vectorized version
of your code, you can compare the output of your vectorized code and
non-vectorized code to make sure that they produce the same outputs.

1.3.3 Vectorizing regularized logistic regression

After you have implemented vectorization for logistic regression, you will now
add regularization to the cost function. Recall that for regularized logistic
regression, the cost function is defined as

J(θ) =
1

m

m∑
i=1

[
−y(i) log(hθ(x

(i)))− (1− y(i)) log(1− hθ(x(i)))
]

+
λ

2m

n∑
j=1

θ2j .

Note that you should not be regularizing θ0 which is used for the bias
term.

Correspondingly, the partial derivative of regularized logistic regression
cost for θj is defined as

∂J(θ)

∂θ0
=

1

m

m∑
i=1

(hθ(x
(i))− y(i))x(i)j for j = 0

∂J(θ)

∂θj
=

(
1

m

m∑
i=1

(hθ(x
(i))− y(i))x(i)j

)
+
λ

m
θj for j ≥ 1

Now modify your code in lrCostFunction to account for regularization.
Once again, you should not put any loops into your code.

7

Octave/MATLAB Tip: When implementing the vectorization for reg-
ularized logistic regression, you might often want to only sum and update
certain elements of θ. In Octave/MATLAB, you can index into the matri-
ces to access and update only certain elements. For example, A(:, 3:5)

= B(:, 1:3) will replaces the columns 3 to 5 of A with the columns 1 to
3 from B. One special keyword you can use in indexing is the end keyword
in indexing. This allows us to select columns (or rows) until the end of the
matrix. For example, A(:, 2:end) will only return elements from the 2nd

to last column of A. Thus, you could use this together with the sum and
.^ operations to compute the sum of only the elements you are interested
in (e.g., sum(z(2:end).^2)). In the starter code, lrCostFunction.m, we
have also provided hints on yet another possible method computing the
regularized gradient.

You should now submit your solutions.

1.4 One-vs-all Classification

In this part of the exercise, you will implement one-vs-all classification by
training multiple regularized logistic regression classifiers, one for each of
the K classes in our dataset (Figure 1). In the handwritten digits dataset,
K = 10, but your code should work for any value of K.

You should now complete the code in oneVsAll.m to train one classifier for
each class. In particular, your code should return all the classifier parameters
in a matrix Θ ∈ RK×(N+1) , where each row of Θ corresponds to the learned
logistic regression parameters for one class. You can do this with a “for”-loop
from 1 to K, training each classifier independently.

Note that the y argument to this function is a vector of labels from 1 to
10, where we have mapped the digit “0” to the label 10 (to avoid confusions
with indexing).

When training the classifier for class k ∈ {1, ..., K}, you will want a m-
dimensional vector of labels y, where yj ∈ 0, 1 indicates whether the j-th
training instance belongs to class k (yj = 1), or if it belongs to a different
class (yj = 0). You may find logical arrays helpful for this task.

8

Octave/MATLAB Tip: Logical arrays in Octave/MATLAB are arrays
which contain binary (0 or 1) elements. In Octave/MATLAB, evaluating
the expression a == b for a vector a (of size m×1) and scalar b will return
a vector of the same size as a with ones at positions where the elements
of a are equal to b and zeroes where they are different. To see how this
works for yourself, try the following code in Octave/MATLAB:

a = 1:10; % Create a and b

b = 3;

a == b % You should try different values of b here

Furthermore, you will be using fmincg for this exercise (instead of fminunc).
fmincg works similarly to fminunc, but is more more efficient for dealing with
a large number of parameters.

After you have correctly completed the code for oneVsAll.m, the script
ex3.m will continue to use your oneVsAll function to train a multi-class clas-
sifier.

You should now submit your solutions.

1.4.1 One-vs-all Prediction

After training your one-vs-all classifier, you can now use it to predict the
digit contained in a given image. For each input, you should compute the
“probability” that it belongs to each class using the trained logistic regression
classifiers. Your one-vs-all prediction function will pick the class for which the
corresponding logistic regression classifier outputs the highest probability and
return the class label (1, 2,..., or K) as the prediction for the input example.

You should now complete the code in predictOneVsAll.m to use the
one-vs-all classifier to make predictions.

Once you are done, ex3.m will call your predictOneVsAll function using
the learned value of Θ. You should see that the training set accuracy is about
94.9% (i.e., it classifies 94.9% of the examples in the training set correctly).

You should now submit your solutions.

9

2 Neural Networks

In the previous part of this exercise, you implemented multi-class logistic re-
gression to recognize handwritten digits. However, logistic regression cannot
form more complex hypotheses as it is only a linear classifier.3

In this part of the exercise, you will implement a neural network to rec-
ognize handwritten digits using the same training set as before. The neural
network will be able to represent complex models that form non-linear hy-
potheses. For this week, you will be using parameters from a neural network
that we have already trained. Your goal is to implement the feedforward
propagation algorithm to use our weights for prediction. In next week’s ex-
ercise, you will write the backpropagation algorithm for learning the neural
network parameters.

The provided script, ex3 nn.m, will help you step through this exercise.

2.1 Model representation

Our neural network is shown in Figure 2. It has 3 layers – an input layer, a
hidden layer and an output layer. Recall that our inputs are pixel values of
digit images. Since the images are of size 20×20, this gives us 400 input layer
units (excluding the extra bias unit which always outputs +1). As before,
the training data will be loaded into the variables X and y.

You have been provided with a set of network parameters (Θ(1),Θ(2))
already trained by us. These are stored in ex3weights.mat and will be
loaded by ex3 nn.m into Theta1 and Theta2 The parameters have dimensions
that are sized for a neural network with 25 units in the second layer and 10
output units (corresponding to the 10 digit classes).

% Load saved matrices from file
load('ex3weights.mat');

% The matrices Theta1 and Theta2 will now be in your Octave
% environment
% Theta1 has size 25 x 401
% Theta2 has size 10 x 26

3You could add more features (such as polynomial features) to logistic regression, but
that can be very expensive to train.

10

Figure 2: Neural network model.

2.2 Feedforward Propagation and Prediction

Now you will implement feedforward propagation for the neural network. You
will need to complete the code in predict.m to return the neural network’s
prediction.

You should implement the feedforward computation that computes hθ(x
(i))

for every example i and returns the associated predictions. Similar to the
one-vs-all classification strategy, the prediction from the neural network will
be the label that has the largest output (hθ(x))k.

Implementation Note: The matrix X contains the examples in rows.
When you complete the code in predict.m, you will need to add the
column of 1’s to the matrix. The matrices Theta1 and Theta2 contain
the parameters for each unit in rows. Specifically, the first row of Theta1
corresponds to the first hidden unit in the second layer. In Octave/MAT-
LAB, when you compute z(2) = Θ(1)a(1), be sure that you index (and if
necessary, transpose) X correctly so that you get a(l) as a column vector.

Once you are done, ex3 nn.m will call your predict function using the
loaded set of parameters for Theta1 and Theta2. You should see that the

11

scruel
铅笔

scruel
铅笔

accuracy is about 97.5%. After that, an interactive sequence will launch dis-
playing images from the training set one at a time, while the console prints
out the predicted label for the displayed image. To stop the image sequence,
press Ctrl-C.

You should now submit your solutions.

Submission and Grading

After completing this assignment, be sure to use the submit function to sub-
mit your solutions to our servers. The following is a breakdown of how each
part of this exercise is scored.

Part Submitted File Points
Regularized Logisic Regression lrCostFunction.m 30 points
One-vs-all classifier training oneVsAll.m 20 points
One-vs-all classifier prediction predictOneVsAll.m 20 points
Neural Network Prediction Function predict.m 30 points
Total Points 100 points

You are allowed to submit your solutions multiple times, and we will take
only the highest score into consideration.

12

	Multi-class Classification
	Dataset
	Visualizing the data
	Vectorizing Logistic Regression
	Vectorizing the cost function
	Vectorizing the gradient
	Vectorizing regularized logistic regression

	One-vs-all Classification
	One-vs-all Prediction

	Neural Networks
	Model representation
	Feedforward Propagation and Prediction

