function [J grad] = nnCostFunction(nn_params, ... input_layer_size, ... hidden_layer_size, ... num_labels, ... X, y, lambda) %NNCOSTFUNCTION Implements the neural network cost function for a two layer %neural network which performs classification % [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ... % X, y, lambda) computes the cost and gradient of the neural network. The % parameters for the neural network are "unrolled" into the vector % nn_params and need to be converted back into the weight matrices. % % The returned parameter grad should be a "unrolled" vector of the % partial derivatives of the neural network. % % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices % for our 2 layer neural network Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... num_labels, (hidden_layer_size + 1)); % Setup some useful variables m = size(X, 1); % You need to return the following variables correctly J = 0; Theta1_grad = zeros(size(Theta1)); Theta2_grad = zeros(size(Theta2)); % ====================== YOUR CODE HERE ====================== % Instructions: You should complete the code by working through the % following parts. % % Part 1: Feedforward the neural network and return the cost in the % variable J. After implementing Part 1, you can verify that your % cost function computation is correct by verifying the cost % computed in ex4.m % % Part 2: Implement the backpropagation algorithm to compute the gradients % Theta1_grad and Theta2_grad. You should return the partial derivatives of % the cost function with respect to Theta1 and Theta2 in Theta1_grad and % Theta2_grad, respectively. After implementing Part 2, you can check % that your implementation is correct by running checkNNGradients % % Note: The vector y passed into the function is a vector of labels % containing values from 1..K. You need to map this vector into a % binary vector of 1's and 0's to be used with the neural network % cost function. % % Hint: We recommend implementing backpropagation using a for-loop % over the training examples if you are implementing it for the % first time. % % Part 3: Implement regularization with the cost function and gradients. % % Hint: You can implement this around the code for % backpropagation. That is, you can compute the gradients for % the regularization separately and then add them to Theta1_grad % and Theta2_grad from Part 2. % temp_y = zeros(m,num_labels); for i = 1 : m temp_y(i,y(i)) = 1; end p = zeros(size(X, 1), 1); X = [ones(m, 1), X]; a2 = sigmoid(X * Theta1'); a2 = [ones(m, 1), a2]; hx = sigmoid(a2 * Theta2'); %无需对hx的结果进行统一化(提取max),因为hx对每一个值的预估都是有用的数据,可以用来计算J J = 1 / m * sum(sum(-temp_y .* log(hx) - (1 - temp_y) .* log(1 - hx))) + lambda / (2 * m) * (sum((Theta1(:, 2:end) .^ 2)(:)) + (sum((Theta2(:, 2:end) .^ 2)(:)))); delta_3 = hx - temp_y; delta_2 = delta_3 * Theta2.* a2 .* (1 - a2); delta_2 = delta_2(:, 2:end); Theta2_grad = 1 / m * (Theta2_grad + delta_3' * a2); Theta1_grad = 1 / m * (Theta1_grad + delta_2' * X); %Regularized Neural Networks Theta2_grad(:, 2:end) = Theta2_grad(:, 2:end) + lambda / m * (Theta2(:, 2:end)); Theta1_grad(:, 2:end) = Theta1_grad(:, 2:end) + lambda / m * (Theta1(:, 2:end)); % ------------------------------------------------------------- % ========================================================================= % Unroll gradients grad = [Theta1_grad(:) ; Theta2_grad(:)]; end