update go-mssqldb 2019-11-28 (1d7a30a10f73) -> 2020-04-28 (06a60b6afbbc)master
@@ -26,7 +26,7 @@ require ( | |||||
github.com/cznic/b v0.0.0-20181122101859-a26611c4d92d // indirect | github.com/cznic/b v0.0.0-20181122101859-a26611c4d92d // indirect | ||||
github.com/cznic/mathutil v0.0.0-20181122101859-297441e03548 // indirect | github.com/cznic/mathutil v0.0.0-20181122101859-297441e03548 // indirect | ||||
github.com/cznic/strutil v0.0.0-20181122101858-275e90344537 // indirect | github.com/cznic/strutil v0.0.0-20181122101858-275e90344537 // indirect | ||||
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 | |||||
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc | |||||
github.com/dgrijalva/jwt-go v3.2.0+incompatible | github.com/dgrijalva/jwt-go v3.2.0+incompatible | ||||
github.com/dustin/go-humanize v1.0.0 | github.com/dustin/go-humanize v1.0.0 | ||||
github.com/editorconfig/editorconfig-core-go/v2 v2.1.1 | github.com/editorconfig/editorconfig-core-go/v2 v2.1.1 | ||||
@@ -102,7 +102,7 @@ require ( | |||||
github.com/yohcop/openid-go v1.0.0 | github.com/yohcop/openid-go v1.0.0 | ||||
github.com/yuin/goldmark v1.1.25 | github.com/yuin/goldmark v1.1.25 | ||||
github.com/yuin/goldmark-meta v0.0.0-20191126180153-f0638e958b60 | github.com/yuin/goldmark-meta v0.0.0-20191126180153-f0638e958b60 | ||||
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 | |||||
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 | |||||
golang.org/x/net v0.0.0-20200506145744-7e3656a0809f | golang.org/x/net v0.0.0-20200506145744-7e3656a0809f | ||||
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d | golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d | ||||
golang.org/x/sys v0.0.0-20200509044756-6aff5f38e54f | golang.org/x/sys v0.0.0-20200509044756-6aff5f38e54f | ||||
@@ -147,8 +147,8 @@ github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSs | |||||
github.com/denisenkom/go-mssqldb v0.0.0-20190707035753-2be1aa521ff4/go.mod h1:zAg7JM8CkOJ43xKXIj7eRO9kmWm/TW578qo+oDO6tuM= | github.com/denisenkom/go-mssqldb v0.0.0-20190707035753-2be1aa521ff4/go.mod h1:zAg7JM8CkOJ43xKXIj7eRO9kmWm/TW578qo+oDO6tuM= | ||||
github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538 h1:bpWCJ5MddHsv4Xtl3azkK89mZzd/vvut32mvAnKbyUA= | github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538 h1:bpWCJ5MddHsv4Xtl3azkK89mZzd/vvut32mvAnKbyUA= | ||||
github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU= | github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU= | ||||
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 h1:OGNva6WhsKst5OZf7eZOklDztV3hwtTHovdrLHV+MsA= | |||||
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU= | |||||
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc h1:VRRKCwnzqk8QCaRC4os14xoKDdbHqqlJtJA0oc1ZAjg= | |||||
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU= | |||||
github.com/dgrijalva/jwt-go v3.2.0+incompatible h1:7qlOGliEKZXTDg6OTjfoBKDXWrumCAMpl/TFQ4/5kLM= | github.com/dgrijalva/jwt-go v3.2.0+incompatible h1:7qlOGliEKZXTDg6OTjfoBKDXWrumCAMpl/TFQ4/5kLM= | ||||
github.com/dgrijalva/jwt-go v3.2.0+incompatible/go.mod h1:E3ru+11k8xSBh+hMPgOLZmtrrCbhqsmaPHjLKYnJCaQ= | github.com/dgrijalva/jwt-go v3.2.0+incompatible/go.mod h1:E3ru+11k8xSBh+hMPgOLZmtrrCbhqsmaPHjLKYnJCaQ= | ||||
github.com/dgryski/go-sip13 v0.0.0-20181026042036-e10d5fee7954/go.mod h1:vAd38F8PWV+bWy6jNmig1y/TA+kYO4g3RSRF0IAv0no= | github.com/dgryski/go-sip13 v0.0.0-20181026042036-e10d5fee7954/go.mod h1:vAd38F8PWV+bWy6jNmig1y/TA+kYO4g3RSRF0IAv0no= | ||||
@@ -683,6 +683,8 @@ golang.org/x/crypto v0.0.0-20190927123631-a832865fa7ad/go.mod h1:yigFU9vqHzYiE8U | |||||
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= | golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= | ||||
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 h1:xMPOj6Pz6UipU1wXLkrtqpHbR0AVFnyPEQq/wRWz9lM= | golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 h1:xMPOj6Pz6UipU1wXLkrtqpHbR0AVFnyPEQq/wRWz9lM= | ||||
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= | golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= | ||||
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 h1:IaQbIIB2X/Mp/DKctl6ROxz1KyMlKp4uyvL6+kQ7C88= | |||||
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= | |||||
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= | golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= | ||||
golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8= | golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8= | ||||
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js= | golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js= | ||||
@@ -18,7 +18,7 @@ Other supported formats are listed below. | |||||
### Common parameters: | ### Common parameters: | ||||
* `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used. | |||||
* `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used. The user domain sensitive to the case which is defined in the connection string. | |||||
* `password` | * `password` | ||||
* `database` | * `database` | ||||
* `connection timeout` - in seconds (default is 0 for no timeout), set to 0 for no timeout. Recommended to set to 0 and use context to manage query and connection timeouts. | * `connection timeout` - in seconds (default is 0 for no timeout), set to 0 for no timeout. Recommended to set to 0 and use context to manage query and connection timeouts. | ||||
@@ -106,6 +106,26 @@ Other supported formats are listed below. | |||||
* `odbc:server=localhost;user id=sa;password={foo{bar}` // Literal `{`, password is "foo{bar" | * `odbc:server=localhost;user id=sa;password={foo{bar}` // Literal `{`, password is "foo{bar" | ||||
* `odbc:server=localhost;user id=sa;password={foo}}bar}` // Escaped `} with `}}`, password is "foo}bar" | * `odbc:server=localhost;user id=sa;password={foo}}bar}` // Escaped `} with `}}`, password is "foo}bar" | ||||
### Azure Active Directory authentication - preview | |||||
The configuration of functionality might change in the future. | |||||
Azure Active Directory (AAD) access tokens are relatively short lived and need to be | |||||
valid when a new connection is made. Authentication is supported using a callback func that | |||||
provides a fresh and valid token using a connector: | |||||
``` golang | |||||
conn, err := mssql.NewAccessTokenConnector( | |||||
"Server=test.database.windows.net;Database=testdb", | |||||
tokenProvider) | |||||
if err != nil { | |||||
// handle errors in DSN | |||||
} | |||||
db := sql.OpenDB(conn) | |||||
``` | |||||
Where `tokenProvider` is a function that returns a fresh access token or an error. None of these statements | |||||
actually trigger the retrieval of a token, this happens when the first statment is issued and a connection | |||||
is created. | |||||
## Executing Stored Procedures | ## Executing Stored Procedures | ||||
To run a stored procedure, set the query text to the procedure name: | To run a stored procedure, set the query text to the procedure name: | ||||
@@ -0,0 +1,51 @@ | |||||
// +build go1.10 | |||||
package mssql | |||||
import ( | |||||
"context" | |||||
"database/sql/driver" | |||||
"errors" | |||||
"fmt" | |||||
) | |||||
var _ driver.Connector = &accessTokenConnector{} | |||||
// accessTokenConnector wraps Connector and injects a | |||||
// fresh access token when connecting to the database | |||||
type accessTokenConnector struct { | |||||
Connector | |||||
accessTokenProvider func() (string, error) | |||||
} | |||||
// NewAccessTokenConnector creates a new connector from a DSN and a token provider. | |||||
// The token provider func will be called when a new connection is requested and should return a valid access token. | |||||
// The returned connector may be used with sql.OpenDB. | |||||
func NewAccessTokenConnector(dsn string, tokenProvider func() (string, error)) (driver.Connector, error) { | |||||
if tokenProvider == nil { | |||||
return nil, errors.New("mssql: tokenProvider cannot be nil") | |||||
} | |||||
conn, err := NewConnector(dsn) | |||||
if err != nil { | |||||
return nil, err | |||||
} | |||||
c := &accessTokenConnector{ | |||||
Connector: *conn, | |||||
accessTokenProvider: tokenProvider, | |||||
} | |||||
return c, nil | |||||
} | |||||
// Connect returns a new database connection | |||||
func (c *accessTokenConnector) Connect(ctx context.Context) (driver.Conn, error) { | |||||
var err error | |||||
c.Connector.params.fedAuthAccessToken, err = c.accessTokenProvider() | |||||
if err != nil { | |||||
return nil, fmt.Errorf("mssql: error retrieving access token: %+v", err) | |||||
} | |||||
return c.Connector.Connect(ctx) | |||||
} |
@@ -37,6 +37,7 @@ type connectParams struct { | |||||
failOverPartner string | failOverPartner string | ||||
failOverPort uint64 | failOverPort uint64 | ||||
packetSize uint16 | packetSize uint16 | ||||
fedAuthAccessToken string | |||||
} | } | ||||
func parseConnectParams(dsn string) (connectParams, error) { | func parseConnectParams(dsn string) (connectParams, error) { | ||||
@@ -397,7 +397,10 @@ func (s *Stmt) Close() error { | |||||
} | } | ||||
func (s *Stmt) SetQueryNotification(id, options string, timeout time.Duration) { | func (s *Stmt) SetQueryNotification(id, options string, timeout time.Duration) { | ||||
to := uint32(timeout / time.Second) | |||||
// 2.2.5.3.1 Query Notifications Header | |||||
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/e168d373-a7b7-41aa-b6ca-25985466a7e0 | |||||
// Timeout in milliseconds in TDS protocol. | |||||
to := uint32(timeout / time.Millisecond) | |||||
if to < 1 { | if to < 1 { | ||||
to = 1 | to = 1 | ||||
} | } | ||||
@@ -4,11 +4,14 @@ package mssql | |||||
import ( | import ( | ||||
"crypto/des" | "crypto/des" | ||||
"crypto/hmac" | |||||
"crypto/md5" | "crypto/md5" | ||||
"crypto/rand" | "crypto/rand" | ||||
"encoding/binary" | "encoding/binary" | ||||
"errors" | "errors" | ||||
"fmt" | |||||
"strings" | "strings" | ||||
"time" | |||||
"unicode/utf16" | "unicode/utf16" | ||||
"golang.org/x/crypto/md4" | "golang.org/x/crypto/md4" | ||||
@@ -198,86 +201,204 @@ func ntlmSessionResponse(clientNonce [8]byte, serverChallenge [8]byte, password | |||||
return response(hash, passwordHash) | return response(hash, passwordHash) | ||||
} | } | ||||
func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) { | |||||
if string(bytes[0:8]) != "NTLMSSP\x00" { | |||||
return nil, errorNTLM | |||||
func ntlmHashNoPadding(val string) []byte { | |||||
hash := make([]byte, 16) | |||||
h := md4.New() | |||||
h.Write(utf16le(val)) | |||||
h.Sum(hash[:0]) | |||||
return hash | |||||
} | |||||
func hmacMD5(passwordHash, data []byte) []byte { | |||||
hmacEntity := hmac.New(md5.New, passwordHash) | |||||
hmacEntity.Write(data) | |||||
return hmacEntity.Sum(nil) | |||||
} | |||||
func getNTLMv2AndLMv2ResponsePayloads(userDomain, username, password string, challenge, nonce [8]byte, targetInfoFields []byte, timestamp time.Time) (ntlmV2Payload, lmV2Payload []byte) { | |||||
// NTLMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theNtlmv2Response | |||||
ntlmHash := ntlmHashNoPadding(password) | |||||
usernameAndTargetBytes := utf16le(strings.ToUpper(username) + userDomain) | |||||
ntlmV2Hash := hmacMD5(ntlmHash, usernameAndTargetBytes) | |||||
targetInfoLength := len(targetInfoFields) | |||||
blob := make([]byte, 32+targetInfoLength) | |||||
binary.BigEndian.PutUint32(blob[:4], 0x01010000) | |||||
binary.BigEndian.PutUint32(blob[4:8], 0x00000000) | |||||
binary.BigEndian.PutUint64(blob[8:16], uint64(timestamp.UnixNano())) | |||||
copy(blob[16:24], nonce[:]) | |||||
binary.BigEndian.PutUint32(blob[24:28], 0x00000000) | |||||
copy(blob[28:], targetInfoFields) | |||||
binary.BigEndian.PutUint32(blob[28+targetInfoLength:], 0x00000000) | |||||
challengeLength := len(challenge) | |||||
blobLength := len(blob) | |||||
challengeAndBlob := make([]byte, challengeLength+blobLength) | |||||
copy(challengeAndBlob[:challengeLength], challenge[:]) | |||||
copy(challengeAndBlob[challengeLength:], blob) | |||||
hashedChallenge := hmacMD5(ntlmV2Hash, challengeAndBlob) | |||||
ntlmV2Payload = append(hashedChallenge, blob...) | |||||
// LMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theLmv2Response | |||||
ntlmV2hash := hmacMD5(ntlmHash, usernameAndTargetBytes) | |||||
challengeAndNonce := make([]byte, 16) | |||||
copy(challengeAndNonce[:8], challenge[:]) | |||||
copy(challengeAndNonce[8:], nonce[:]) | |||||
hashedChallenge = hmacMD5(ntlmV2hash, challengeAndNonce) | |||||
lmV2Payload = append(hashedChallenge, nonce[:]...) | |||||
return | |||||
} | |||||
func negotiateExtendedSessionSecurity(flags uint32, message []byte, challenge [8]byte, username, password, userDom string) (lm, nt []byte, err error) { | |||||
nonce := clientChallenge() | |||||
// Official specification: https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/b38c36ed-2804-4868-a9ff-8dd3182128e4 | |||||
// Unofficial walk through referenced by https://www.freetds.org/userguide/domains.htm: http://davenport.sourceforge.net/ntlm.html | |||||
if (flags & _NEGOTIATE_TARGET_INFO) != 0 { | |||||
targetInfoFields, err := getNTLMv2TargetInfoFields(message) | |||||
if err != nil { | |||||
return lm, nt, err | |||||
} | |||||
nt, lm = getNTLMv2AndLMv2ResponsePayloads(userDom, username, password, challenge, nonce, targetInfoFields, time.Now()) | |||||
return lm, nt, nil | |||||
} | } | ||||
if binary.LittleEndian.Uint32(bytes[8:12]) != _CHALLENGE_MESSAGE { | |||||
return nil, errorNTLM | |||||
var lm_bytes [24]byte | |||||
copy(lm_bytes[:8], nonce[:]) | |||||
lm = lm_bytes[:] | |||||
nt_bytes := ntlmSessionResponse(nonce, challenge, password) | |||||
nt = nt_bytes[:] | |||||
return lm, nt, nil | |||||
} | |||||
func getNTLMv2TargetInfoFields(type2Message []byte) (info []byte, err error) { | |||||
type2MessageError := "mssql: while parsing NTLMv2 type 2 message, length %d too small for offset %d" | |||||
type2MessageLength := len(type2Message) | |||||
if type2MessageLength < 20 { | |||||
return nil, fmt.Errorf(type2MessageError, type2MessageLength, 20) | |||||
} | } | ||||
flags := binary.LittleEndian.Uint32(bytes[20:24]) | |||||
var challenge [8]byte | |||||
copy(challenge[:], bytes[24:32]) | |||||
var lm, nt []byte | |||||
if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 { | |||||
nonce := clientChallenge() | |||||
var lm_bytes [24]byte | |||||
copy(lm_bytes[:8], nonce[:]) | |||||
lm = lm_bytes[:] | |||||
nt_bytes := ntlmSessionResponse(nonce, challenge, auth.Password) | |||||
nt = nt_bytes[:] | |||||
} else { | |||||
lm_bytes := lmResponse(challenge, auth.Password) | |||||
lm = lm_bytes[:] | |||||
nt_bytes := ntResponse(challenge, auth.Password) | |||||
nt = nt_bytes[:] | |||||
targetNameAllocated := binary.LittleEndian.Uint16(type2Message[14:16]) | |||||
targetNameOffset := binary.LittleEndian.Uint32(type2Message[16:20]) | |||||
endOfOffset := int(targetNameOffset + uint32(targetNameAllocated)) | |||||
if type2MessageLength < endOfOffset { | |||||
return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset) | |||||
} | } | ||||
targetInformationAllocated := binary.LittleEndian.Uint16(type2Message[42:44]) | |||||
targetInformationDataOffset := binary.LittleEndian.Uint32(type2Message[44:48]) | |||||
endOfOffset = int(targetInformationDataOffset + uint32(targetInformationAllocated)) | |||||
if type2MessageLength < endOfOffset { | |||||
return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset) | |||||
} | |||||
targetInformationBytes := make([]byte, targetInformationAllocated) | |||||
copy(targetInformationBytes, type2Message[targetInformationDataOffset:targetInformationDataOffset+uint32(targetInformationAllocated)]) | |||||
return targetInformationBytes, nil | |||||
} | |||||
func buildNTLMResponsePayload(lm, nt []byte, flags uint32, domain, workstation, username string) ([]byte, error) { | |||||
lm_len := len(lm) | lm_len := len(lm) | ||||
nt_len := len(nt) | nt_len := len(nt) | ||||
domain16 := utf16le(auth.Domain) | |||||
domain16 := utf16le(domain) | |||||
domain_len := len(domain16) | domain_len := len(domain16) | ||||
user16 := utf16le(auth.UserName) | |||||
user16 := utf16le(username) | |||||
user_len := len(user16) | user_len := len(user16) | ||||
workstation16 := utf16le(auth.Workstation) | |||||
workstation16 := utf16le(workstation) | |||||
workstation_len := len(workstation16) | workstation_len := len(workstation16) | ||||
msg := make([]byte, 88+lm_len+nt_len+domain_len+user_len+workstation_len) | msg := make([]byte, 88+lm_len+nt_len+domain_len+user_len+workstation_len) | ||||
copy(msg, []byte("NTLMSSP\x00")) | copy(msg, []byte("NTLMSSP\x00")) | ||||
binary.LittleEndian.PutUint32(msg[8:], _AUTHENTICATE_MESSAGE) | binary.LittleEndian.PutUint32(msg[8:], _AUTHENTICATE_MESSAGE) | ||||
// Lm Challenge Response Fields | // Lm Challenge Response Fields | ||||
binary.LittleEndian.PutUint16(msg[12:], uint16(lm_len)) | binary.LittleEndian.PutUint16(msg[12:], uint16(lm_len)) | ||||
binary.LittleEndian.PutUint16(msg[14:], uint16(lm_len)) | binary.LittleEndian.PutUint16(msg[14:], uint16(lm_len)) | ||||
binary.LittleEndian.PutUint32(msg[16:], 88) | binary.LittleEndian.PutUint32(msg[16:], 88) | ||||
// Nt Challenge Response Fields | // Nt Challenge Response Fields | ||||
binary.LittleEndian.PutUint16(msg[20:], uint16(nt_len)) | binary.LittleEndian.PutUint16(msg[20:], uint16(nt_len)) | ||||
binary.LittleEndian.PutUint16(msg[22:], uint16(nt_len)) | binary.LittleEndian.PutUint16(msg[22:], uint16(nt_len)) | ||||
binary.LittleEndian.PutUint32(msg[24:], uint32(88+lm_len)) | binary.LittleEndian.PutUint32(msg[24:], uint32(88+lm_len)) | ||||
// Domain Name Fields | // Domain Name Fields | ||||
binary.LittleEndian.PutUint16(msg[28:], uint16(domain_len)) | binary.LittleEndian.PutUint16(msg[28:], uint16(domain_len)) | ||||
binary.LittleEndian.PutUint16(msg[30:], uint16(domain_len)) | binary.LittleEndian.PutUint16(msg[30:], uint16(domain_len)) | ||||
binary.LittleEndian.PutUint32(msg[32:], uint32(88+lm_len+nt_len)) | binary.LittleEndian.PutUint32(msg[32:], uint32(88+lm_len+nt_len)) | ||||
// User Name Fields | // User Name Fields | ||||
binary.LittleEndian.PutUint16(msg[36:], uint16(user_len)) | binary.LittleEndian.PutUint16(msg[36:], uint16(user_len)) | ||||
binary.LittleEndian.PutUint16(msg[38:], uint16(user_len)) | binary.LittleEndian.PutUint16(msg[38:], uint16(user_len)) | ||||
binary.LittleEndian.PutUint32(msg[40:], uint32(88+lm_len+nt_len+domain_len)) | binary.LittleEndian.PutUint32(msg[40:], uint32(88+lm_len+nt_len+domain_len)) | ||||
// Workstation Fields | // Workstation Fields | ||||
binary.LittleEndian.PutUint16(msg[44:], uint16(workstation_len)) | binary.LittleEndian.PutUint16(msg[44:], uint16(workstation_len)) | ||||
binary.LittleEndian.PutUint16(msg[46:], uint16(workstation_len)) | binary.LittleEndian.PutUint16(msg[46:], uint16(workstation_len)) | ||||
binary.LittleEndian.PutUint32(msg[48:], uint32(88+lm_len+nt_len+domain_len+user_len)) | binary.LittleEndian.PutUint32(msg[48:], uint32(88+lm_len+nt_len+domain_len+user_len)) | ||||
// Encrypted Random Session Key Fields | // Encrypted Random Session Key Fields | ||||
binary.LittleEndian.PutUint16(msg[52:], 0) | binary.LittleEndian.PutUint16(msg[52:], 0) | ||||
binary.LittleEndian.PutUint16(msg[54:], 0) | binary.LittleEndian.PutUint16(msg[54:], 0) | ||||
binary.LittleEndian.PutUint32(msg[56:], uint32(88+lm_len+nt_len+domain_len+user_len+workstation_len)) | binary.LittleEndian.PutUint32(msg[56:], uint32(88+lm_len+nt_len+domain_len+user_len+workstation_len)) | ||||
// Negotiate Flags | // Negotiate Flags | ||||
binary.LittleEndian.PutUint32(msg[60:], flags) | binary.LittleEndian.PutUint32(msg[60:], flags) | ||||
// Version | // Version | ||||
binary.LittleEndian.PutUint32(msg[64:], 0) | binary.LittleEndian.PutUint32(msg[64:], 0) | ||||
binary.LittleEndian.PutUint32(msg[68:], 0) | binary.LittleEndian.PutUint32(msg[68:], 0) | ||||
// MIC | // MIC | ||||
binary.LittleEndian.PutUint32(msg[72:], 0) | binary.LittleEndian.PutUint32(msg[72:], 0) | ||||
binary.LittleEndian.PutUint32(msg[76:], 0) | binary.LittleEndian.PutUint32(msg[76:], 0) | ||||
binary.LittleEndian.PutUint32(msg[88:], 0) | binary.LittleEndian.PutUint32(msg[88:], 0) | ||||
binary.LittleEndian.PutUint32(msg[84:], 0) | binary.LittleEndian.PutUint32(msg[84:], 0) | ||||
// Payload | // Payload | ||||
copy(msg[88:], lm) | copy(msg[88:], lm) | ||||
copy(msg[88+lm_len:], nt) | copy(msg[88+lm_len:], nt) | ||||
copy(msg[88+lm_len+nt_len:], domain16) | copy(msg[88+lm_len+nt_len:], domain16) | ||||
copy(msg[88+lm_len+nt_len+domain_len:], user16) | copy(msg[88+lm_len+nt_len+domain_len:], user16) | ||||
copy(msg[88+lm_len+nt_len+domain_len+user_len:], workstation16) | copy(msg[88+lm_len+nt_len+domain_len+user_len:], workstation16) | ||||
return msg, nil | return msg, nil | ||||
} | } | ||||
func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) { | |||||
signature := string(bytes[0:8]) | |||||
if signature != "NTLMSSP\x00" { | |||||
return nil, errorNTLM | |||||
} | |||||
messageTypeIndicator := binary.LittleEndian.Uint32(bytes[8:12]) | |||||
if messageTypeIndicator != _CHALLENGE_MESSAGE { | |||||
return nil, errorNTLM | |||||
} | |||||
var challenge [8]byte | |||||
copy(challenge[:], bytes[24:32]) | |||||
flags := binary.LittleEndian.Uint32(bytes[20:24]) | |||||
if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 { | |||||
lm, nt, err := negotiateExtendedSessionSecurity(flags, bytes, challenge, auth.UserName, auth.Password, auth.Domain) | |||||
if err != nil { | |||||
return nil, err | |||||
} | |||||
return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName) | |||||
} | |||||
lm_bytes := lmResponse(challenge, auth.Password) | |||||
lm := lm_bytes[:] | |||||
nt_bytes := ntResponse(challenge, auth.Password) | |||||
nt := nt_bytes[:] | |||||
return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName) | |||||
} | |||||
func (auth *ntlmAuth) Free() { | func (auth *ntlmAuth) Free() { | ||||
} | } |
@@ -100,13 +100,15 @@ const ( | |||||
// prelogin fields | // prelogin fields | ||||
// http://msdn.microsoft.com/en-us/library/dd357559.aspx | // http://msdn.microsoft.com/en-us/library/dd357559.aspx | ||||
const ( | const ( | ||||
preloginVERSION = 0 | |||||
preloginENCRYPTION = 1 | |||||
preloginINSTOPT = 2 | |||||
preloginTHREADID = 3 | |||||
preloginMARS = 4 | |||||
preloginTRACEID = 5 | |||||
preloginTERMINATOR = 0xff | |||||
preloginVERSION = 0 | |||||
preloginENCRYPTION = 1 | |||||
preloginINSTOPT = 2 | |||||
preloginTHREADID = 3 | |||||
preloginMARS = 4 | |||||
preloginTRACEID = 5 | |||||
preloginFEDAUTHREQUIRED = 6 | |||||
preloginNONCEOPT = 7 | |||||
preloginTERMINATOR = 0xff | |||||
) | ) | ||||
const ( | const ( | ||||
@@ -245,6 +247,12 @@ const ( | |||||
fReadOnlyIntent = 32 | fReadOnlyIntent = 32 | ||||
) | ) | ||||
// OptionFlags3 | |||||
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/773a62b6-ee89-4c02-9e5e-344882630aac | |||||
const ( | |||||
fExtension = 0x10 | |||||
) | |||||
type login struct { | type login struct { | ||||
TDSVersion uint32 | TDSVersion uint32 | ||||
PacketSize uint32 | PacketSize uint32 | ||||
@@ -269,6 +277,89 @@ type login struct { | |||||
SSPI []byte | SSPI []byte | ||||
AtchDBFile string | AtchDBFile string | ||||
ChangePassword string | ChangePassword string | ||||
FeatureExt featureExts | |||||
} | |||||
type featureExts struct { | |||||
features map[byte]featureExt | |||||
} | |||||
type featureExt interface { | |||||
featureID() byte | |||||
toBytes() []byte | |||||
} | |||||
func (e *featureExts) Add(f featureExt) error { | |||||
if f == nil { | |||||
return nil | |||||
} | |||||
id := f.featureID() | |||||
if _, exists := e.features[id]; exists { | |||||
f := "Login error: Feature with ID '%v' is already present in FeatureExt block." | |||||
return fmt.Errorf(f, id) | |||||
} | |||||
if e.features == nil { | |||||
e.features = make(map[byte]featureExt) | |||||
} | |||||
e.features[id] = f | |||||
return nil | |||||
} | |||||
func (e featureExts) toBytes() []byte { | |||||
if len(e.features) == 0 { | |||||
return nil | |||||
} | |||||
var d []byte | |||||
for featureID, f := range e.features { | |||||
featureData := f.toBytes() | |||||
hdr := make([]byte, 5) | |||||
hdr[0] = featureID // FedAuth feature extension BYTE | |||||
binary.LittleEndian.PutUint32(hdr[1:], uint32(len(featureData))) // FeatureDataLen DWORD | |||||
d = append(d, hdr...) | |||||
d = append(d, featureData...) // FeatureData *BYTE | |||||
} | |||||
if d != nil { | |||||
d = append(d, 0xff) // Terminator | |||||
} | |||||
return d | |||||
} | |||||
type featureExtFedAuthSTS struct { | |||||
FedAuthEcho bool | |||||
FedAuthToken string | |||||
Nonce []byte | |||||
} | |||||
func (e *featureExtFedAuthSTS) featureID() byte { | |||||
return 0x02 | |||||
} | |||||
func (e *featureExtFedAuthSTS) toBytes() []byte { | |||||
if e == nil { | |||||
return nil | |||||
} | |||||
options := byte(0x01) << 1 // 0x01 => STS bFedAuthLibrary 7BIT | |||||
if e.FedAuthEcho { | |||||
options |= 1 // fFedAuthEcho | |||||
} | |||||
d := make([]byte, 5) | |||||
d[0] = options | |||||
// looks like string in | |||||
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/f88b63bb-b479-49e1-a87b-deda521da508 | |||||
tokenBytes := str2ucs2(e.FedAuthToken) | |||||
binary.LittleEndian.PutUint32(d[1:], uint32(len(tokenBytes))) // Should be a signed int32, but since the length is relatively small, this should work | |||||
d = append(d, tokenBytes...) | |||||
if len(e.Nonce) == 32 { | |||||
d = append(d, e.Nonce...) | |||||
} | |||||
return d | |||||
} | } | ||||
type loginHeader struct { | type loginHeader struct { | ||||
@@ -295,7 +386,7 @@ type loginHeader struct { | |||||
ServerNameOffset uint16 | ServerNameOffset uint16 | ||||
ServerNameLength uint16 | ServerNameLength uint16 | ||||
ExtensionOffset uint16 | ExtensionOffset uint16 | ||||
ExtensionLenght uint16 | |||||
ExtensionLength uint16 | |||||
CtlIntNameOffset uint16 | CtlIntNameOffset uint16 | ||||
CtlIntNameLength uint16 | CtlIntNameLength uint16 | ||||
LanguageOffset uint16 | LanguageOffset uint16 | ||||
@@ -357,6 +448,8 @@ func sendLogin(w *tdsBuffer, login login) error { | |||||
database := str2ucs2(login.Database) | database := str2ucs2(login.Database) | ||||
atchdbfile := str2ucs2(login.AtchDBFile) | atchdbfile := str2ucs2(login.AtchDBFile) | ||||
changepassword := str2ucs2(login.ChangePassword) | changepassword := str2ucs2(login.ChangePassword) | ||||
featureExt := login.FeatureExt.toBytes() | |||||
hdr := loginHeader{ | hdr := loginHeader{ | ||||
TDSVersion: login.TDSVersion, | TDSVersion: login.TDSVersion, | ||||
PacketSize: login.PacketSize, | PacketSize: login.PacketSize, | ||||
@@ -405,7 +498,18 @@ func sendLogin(w *tdsBuffer, login login) error { | |||||
offset += uint16(len(atchdbfile)) | offset += uint16(len(atchdbfile)) | ||||
hdr.ChangePasswordOffset = offset | hdr.ChangePasswordOffset = offset | ||||
offset += uint16(len(changepassword)) | offset += uint16(len(changepassword)) | ||||
hdr.Length = uint32(offset) | |||||
featureExtOffset := uint32(0) | |||||
featureExtLen := len(featureExt) | |||||
if featureExtLen > 0 { | |||||
hdr.OptionFlags3 |= fExtension | |||||
hdr.ExtensionOffset = offset | |||||
hdr.ExtensionLength = 4 | |||||
offset += hdr.ExtensionLength // DWORD | |||||
featureExtOffset = uint32(offset) | |||||
} | |||||
hdr.Length = uint32(offset) + uint32(featureExtLen) | |||||
var err error | var err error | ||||
err = binary.Write(w, binary.LittleEndian, &hdr) | err = binary.Write(w, binary.LittleEndian, &hdr) | ||||
if err != nil { | if err != nil { | ||||
@@ -455,6 +559,16 @@ func sendLogin(w *tdsBuffer, login login) error { | |||||
if err != nil { | if err != nil { | ||||
return err | return err | ||||
} | } | ||||
if featureExtOffset > 0 { | |||||
err = binary.Write(w, binary.LittleEndian, featureExtOffset) | |||||
if err != nil { | |||||
return err | |||||
} | |||||
_, err = w.Write(featureExt) | |||||
if err != nil { | |||||
return err | |||||
} | |||||
} | |||||
return w.FinishPacket() | return w.FinishPacket() | ||||
} | } | ||||
@@ -844,15 +958,23 @@ initiate_connection: | |||||
AppName: p.appname, | AppName: p.appname, | ||||
TypeFlags: p.typeFlags, | TypeFlags: p.typeFlags, | ||||
} | } | ||||
auth, auth_ok := getAuth(p.user, p.password, p.serverSPN, p.workstation) | |||||
if auth_ok { | |||||
auth, authOk := getAuth(p.user, p.password, p.serverSPN, p.workstation) | |||||
switch { | |||||
case p.fedAuthAccessToken != "": // accesstoken ignores user/password | |||||
featurext := &featureExtFedAuthSTS{ | |||||
FedAuthEcho: len(fields[preloginFEDAUTHREQUIRED]) > 0 && fields[preloginFEDAUTHREQUIRED][0] == 1, | |||||
FedAuthToken: p.fedAuthAccessToken, | |||||
Nonce: fields[preloginNONCEOPT], | |||||
} | |||||
login.FeatureExt.Add(featurext) | |||||
case authOk: | |||||
login.SSPI, err = auth.InitialBytes() | login.SSPI, err = auth.InitialBytes() | ||||
if err != nil { | if err != nil { | ||||
return nil, err | return nil, err | ||||
} | } | ||||
login.OptionFlags2 |= fIntSecurity | login.OptionFlags2 |= fIntSecurity | ||||
defer auth.Free() | defer auth.Free() | ||||
} else { | |||||
default: | |||||
login.UserName = p.user | login.UserName = p.user | ||||
login.Password = p.password | login.Password = p.password | ||||
} | } | ||||
@@ -17,20 +17,21 @@ type token byte | |||||
// token ids | // token ids | ||||
const ( | const ( | ||||
tokenReturnStatus token = 121 // 0x79 | |||||
tokenColMetadata token = 129 // 0x81 | |||||
tokenOrder token = 169 // 0xA9 | |||||
tokenError token = 170 // 0xAA | |||||
tokenInfo token = 171 // 0xAB | |||||
tokenReturnValue token = 0xAC | |||||
tokenLoginAck token = 173 // 0xad | |||||
tokenRow token = 209 // 0xd1 | |||||
tokenNbcRow token = 210 // 0xd2 | |||||
tokenEnvChange token = 227 // 0xE3 | |||||
tokenSSPI token = 237 // 0xED | |||||
tokenDone token = 253 // 0xFD | |||||
tokenDoneProc token = 254 | |||||
tokenDoneInProc token = 255 | |||||
tokenReturnStatus token = 121 // 0x79 | |||||
tokenColMetadata token = 129 // 0x81 | |||||
tokenOrder token = 169 // 0xA9 | |||||
tokenError token = 170 // 0xAA | |||||
tokenInfo token = 171 // 0xAB | |||||
tokenReturnValue token = 0xAC | |||||
tokenLoginAck token = 173 // 0xad | |||||
tokenFeatureExtAck token = 174 // 0xae | |||||
tokenRow token = 209 // 0xd1 | |||||
tokenNbcRow token = 210 // 0xd2 | |||||
tokenEnvChange token = 227 // 0xE3 | |||||
tokenSSPI token = 237 // 0xED | |||||
tokenDone token = 253 // 0xFD | |||||
tokenDoneProc token = 254 | |||||
tokenDoneInProc token = 255 | |||||
) | ) | ||||
// done flags | // done flags | ||||
@@ -447,6 +448,22 @@ func parseLoginAck(r *tdsBuffer) loginAckStruct { | |||||
return res | return res | ||||
} | } | ||||
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/2eb82f8e-11f0-46dc-b42d-27302fa4701a | |||||
func parseFeatureExtAck(r *tdsBuffer) { | |||||
// at most 1 featureAck per feature in featureExt | |||||
// go-mssqldb will add at most 1 feature, the spec defines 7 different features | |||||
for i := 0; i < 8; i++ { | |||||
featureID := r.byte() // FeatureID | |||||
if featureID == 0xff { | |||||
return | |||||
} | |||||
size := r.uint32() // FeatureAckDataLen | |||||
d := make([]byte, size) | |||||
r.ReadFull(d) | |||||
} | |||||
panic("parsed more than 7 featureAck's, protocol implementation error?") | |||||
} | |||||
// http://msdn.microsoft.com/en-us/library/dd357363.aspx | // http://msdn.microsoft.com/en-us/library/dd357363.aspx | ||||
func parseColMetadata72(r *tdsBuffer) (columns []columnStruct) { | func parseColMetadata72(r *tdsBuffer) (columns []columnStruct) { | ||||
count := r.uint16() | count := r.uint16() | ||||
@@ -577,6 +594,8 @@ func processSingleResponse(sess *tdsSession, ch chan tokenStruct, outs map[strin | |||||
case tokenLoginAck: | case tokenLoginAck: | ||||
loginAck := parseLoginAck(sess.buf) | loginAck := parseLoginAck(sess.buf) | ||||
ch <- loginAck | ch <- loginAck | ||||
case tokenFeatureExtAck: | |||||
parseFeatureExtAck(sess.buf) | |||||
case tokenOrder: | case tokenOrder: | ||||
order := parseOrder(sess.buf) | order := parseOrder(sess.buf) | ||||
ch <- order | ch <- order | ||||
@@ -5,6 +5,8 @@ | |||||
// Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693 | // Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693 | ||||
// and the extendable output function (XOF) BLAKE2Xb. | // and the extendable output function (XOF) BLAKE2Xb. | ||||
// | // | ||||
// BLAKE2b is optimized for 64-bit platforms—including NEON-enabled ARMs—and | |||||
// produces digests of any size between 1 and 64 bytes. | |||||
// For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf | // For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf | ||||
// and for BLAKE2Xb see https://blake2.net/blake2x.pdf | // and for BLAKE2Xb see https://blake2.net/blake2x.pdf | ||||
// | // | ||||
@@ -42,10 +42,14 @@ type Cipher struct { | |||||
// The last len bytes of buf are leftover key stream bytes from the previous | // The last len bytes of buf are leftover key stream bytes from the previous | ||||
// XORKeyStream invocation. The size of buf depends on how many blocks are | // XORKeyStream invocation. The size of buf depends on how many blocks are | ||||
// computed at a time. | |||||
// computed at a time by xorKeyStreamBlocks. | |||||
buf [bufSize]byte | buf [bufSize]byte | ||||
len int | len int | ||||
// overflow is set when the counter overflowed, no more blocks can be | |||||
// generated, and the next XORKeyStream call should panic. | |||||
overflow bool | |||||
// The counter-independent results of the first round are cached after they | // The counter-independent results of the first round are cached after they | ||||
// are computed the first time. | // are computed the first time. | ||||
precompDone bool | precompDone bool | ||||
@@ -89,6 +93,7 @@ func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) { | |||||
return nil, errors.New("chacha20: wrong nonce size") | return nil, errors.New("chacha20: wrong nonce size") | ||||
} | } | ||||
key, nonce = key[:KeySize], nonce[:NonceSize] // bounds check elimination hint | |||||
c.key = [8]uint32{ | c.key = [8]uint32{ | ||||
binary.LittleEndian.Uint32(key[0:4]), | binary.LittleEndian.Uint32(key[0:4]), | ||||
binary.LittleEndian.Uint32(key[4:8]), | binary.LittleEndian.Uint32(key[4:8]), | ||||
@@ -139,15 +144,18 @@ func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) { | |||||
// SetCounter sets the Cipher counter. The next invocation of XORKeyStream will | // SetCounter sets the Cipher counter. The next invocation of XORKeyStream will | ||||
// behave as if (64 * counter) bytes had been encrypted so far. | // behave as if (64 * counter) bytes had been encrypted so far. | ||||
// | // | ||||
// To prevent accidental counter reuse, SetCounter panics if counter is | |||||
// less than the current value. | |||||
// To prevent accidental counter reuse, SetCounter panics if counter is less | |||||
// than the current value. | |||||
// | |||||
// Note that the execution time of XORKeyStream is not independent of the | |||||
// counter value. | |||||
func (s *Cipher) SetCounter(counter uint32) { | func (s *Cipher) SetCounter(counter uint32) { | ||||
// Internally, s may buffer multiple blocks, which complicates this | // Internally, s may buffer multiple blocks, which complicates this | ||||
// implementation slightly. When checking whether the counter has rolled | // implementation slightly. When checking whether the counter has rolled | ||||
// back, we must use both s.counter and s.len to determine how many blocks | // back, we must use both s.counter and s.len to determine how many blocks | ||||
// we have already output. | // we have already output. | ||||
outputCounter := s.counter - uint32(s.len)/blockSize | outputCounter := s.counter - uint32(s.len)/blockSize | ||||
if counter < outputCounter { | |||||
if s.overflow || counter < outputCounter { | |||||
panic("chacha20: SetCounter attempted to rollback counter") | panic("chacha20: SetCounter attempted to rollback counter") | ||||
} | } | ||||
@@ -196,34 +204,52 @@ func (s *Cipher) XORKeyStream(dst, src []byte) { | |||||
dst[i] = src[i] ^ b | dst[i] = src[i] ^ b | ||||
} | } | ||||
s.len -= len(keyStream) | s.len -= len(keyStream) | ||||
src = src[len(keyStream):] | |||||
dst = dst[len(keyStream):] | |||||
dst, src = dst[len(keyStream):], src[len(keyStream):] | |||||
} | |||||
if len(src) == 0 { | |||||
return | |||||
} | } | ||||
const blocksPerBuf = bufSize / blockSize | |||||
numBufs := (uint64(len(src)) + bufSize - 1) / bufSize | |||||
if uint64(s.counter)+numBufs*blocksPerBuf >= 1<<32 { | |||||
// If we'd need to let the counter overflow and keep generating output, | |||||
// panic immediately. If instead we'd only reach the last block, remember | |||||
// not to generate any more output after the buffer is drained. | |||||
numBlocks := (uint64(len(src)) + blockSize - 1) / blockSize | |||||
if s.overflow || uint64(s.counter)+numBlocks > 1<<32 { | |||||
panic("chacha20: counter overflow") | panic("chacha20: counter overflow") | ||||
} else if uint64(s.counter)+numBlocks == 1<<32 { | |||||
s.overflow = true | |||||
} | } | ||||
// xorKeyStreamBlocks implementations expect input lengths that are a | // xorKeyStreamBlocks implementations expect input lengths that are a | ||||
// multiple of bufSize. Platform-specific ones process multiple blocks at a | // multiple of bufSize. Platform-specific ones process multiple blocks at a | ||||
// time, so have bufSizes that are a multiple of blockSize. | // time, so have bufSizes that are a multiple of blockSize. | ||||
rem := len(src) % bufSize | |||||
full := len(src) - rem | |||||
full := len(src) - len(src)%bufSize | |||||
if full > 0 { | if full > 0 { | ||||
s.xorKeyStreamBlocks(dst[:full], src[:full]) | s.xorKeyStreamBlocks(dst[:full], src[:full]) | ||||
} | } | ||||
dst, src = dst[full:], src[full:] | |||||
// If using a multi-block xorKeyStreamBlocks would overflow, use the generic | |||||
// one that does one block at a time. | |||||
const blocksPerBuf = bufSize / blockSize | |||||
if uint64(s.counter)+blocksPerBuf > 1<<32 { | |||||
s.buf = [bufSize]byte{} | |||||
numBlocks := (len(src) + blockSize - 1) / blockSize | |||||
buf := s.buf[bufSize-numBlocks*blockSize:] | |||||
copy(buf, src) | |||||
s.xorKeyStreamBlocksGeneric(buf, buf) | |||||
s.len = len(buf) - copy(dst, buf) | |||||
return | |||||
} | |||||
// If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and | // If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and | ||||
// keep the leftover keystream for the next XORKeyStream invocation. | // keep the leftover keystream for the next XORKeyStream invocation. | ||||
if rem > 0 { | |||||
if len(src) > 0 { | |||||
s.buf = [bufSize]byte{} | s.buf = [bufSize]byte{} | ||||
copy(s.buf[:], src[full:]) | |||||
copy(s.buf[:], src) | |||||
s.xorKeyStreamBlocks(s.buf[:], s.buf[:]) | s.xorKeyStreamBlocks(s.buf[:], s.buf[:]) | ||||
s.len = bufSize - copy(dst[full:], s.buf[:]) | |||||
s.len = bufSize - copy(dst, s.buf[:]) | |||||
} | } | ||||
} | } | ||||
@@ -260,7 +286,9 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) { | |||||
s.precompDone = true | s.precompDone = true | ||||
} | } | ||||
for i := 0; i < len(src); i += blockSize { | |||||
// A condition of len(src) > 0 would be sufficient, but this also | |||||
// acts as a bounds check elimination hint. | |||||
for len(src) >= 64 && len(dst) >= 64 { | |||||
// The remainder of the first column round. | // The remainder of the first column round. | ||||
fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter) | fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter) | ||||
@@ -285,49 +313,28 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) { | |||||
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14) | x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14) | ||||
} | } | ||||
// Finally, add back the initial state to generate the key stream. | |||||
x0 += c0 | |||||
x1 += c1 | |||||
x2 += c2 | |||||
x3 += c3 | |||||
x4 += c4 | |||||
x5 += c5 | |||||
x6 += c6 | |||||
x7 += c7 | |||||
x8 += c8 | |||||
x9 += c9 | |||||
x10 += c10 | |||||
x11 += c11 | |||||
x12 += s.counter | |||||
x13 += c13 | |||||
x14 += c14 | |||||
x15 += c15 | |||||
// Add back the initial state to generate the key stream, then | |||||
// XOR the key stream with the source and write out the result. | |||||
addXor(dst[0:4], src[0:4], x0, c0) | |||||
addXor(dst[4:8], src[4:8], x1, c1) | |||||
addXor(dst[8:12], src[8:12], x2, c2) | |||||
addXor(dst[12:16], src[12:16], x3, c3) | |||||
addXor(dst[16:20], src[16:20], x4, c4) | |||||
addXor(dst[20:24], src[20:24], x5, c5) | |||||
addXor(dst[24:28], src[24:28], x6, c6) | |||||
addXor(dst[28:32], src[28:32], x7, c7) | |||||
addXor(dst[32:36], src[32:36], x8, c8) | |||||
addXor(dst[36:40], src[36:40], x9, c9) | |||||
addXor(dst[40:44], src[40:44], x10, c10) | |||||
addXor(dst[44:48], src[44:48], x11, c11) | |||||
addXor(dst[48:52], src[48:52], x12, s.counter) | |||||
addXor(dst[52:56], src[52:56], x13, c13) | |||||
addXor(dst[56:60], src[56:60], x14, c14) | |||||
addXor(dst[60:64], src[60:64], x15, c15) | |||||
s.counter += 1 | s.counter += 1 | ||||
if s.counter == 0 { | |||||
panic("chacha20: internal error: counter overflow") | |||||
} | |||||
in, out := src[i:], dst[i:] | |||||
in, out = in[:blockSize], out[:blockSize] // bounds check elimination hint | |||||
// XOR the key stream with the source and write out the result. | |||||
xor(out[0:], in[0:], x0) | |||||
xor(out[4:], in[4:], x1) | |||||
xor(out[8:], in[8:], x2) | |||||
xor(out[12:], in[12:], x3) | |||||
xor(out[16:], in[16:], x4) | |||||
xor(out[20:], in[20:], x5) | |||||
xor(out[24:], in[24:], x6) | |||||
xor(out[28:], in[28:], x7) | |||||
xor(out[32:], in[32:], x8) | |||||
xor(out[36:], in[36:], x9) | |||||
xor(out[40:], in[40:], x10) | |||||
xor(out[44:], in[44:], x11) | |||||
xor(out[48:], in[48:], x12) | |||||
xor(out[52:], in[52:], x13) | |||||
xor(out[56:], in[56:], x14) | |||||
xor(out[60:], in[60:], x15) | |||||
src, dst = src[blockSize:], dst[blockSize:] | |||||
} | } | ||||
} | } | ||||
@@ -13,10 +13,10 @@ const unaligned = runtime.GOARCH == "386" || | |||||
runtime.GOARCH == "ppc64le" || | runtime.GOARCH == "ppc64le" || | ||||
runtime.GOARCH == "s390x" | runtime.GOARCH == "s390x" | ||||
// xor reads a little endian uint32 from src, XORs it with u and | |||||
// addXor reads a little endian uint32 from src, XORs it with (a + b) and | |||||
// places the result in little endian byte order in dst. | // places the result in little endian byte order in dst. | ||||
func xor(dst, src []byte, u uint32) { | |||||
_, _ = src[3], dst[3] // eliminate bounds checks | |||||
func addXor(dst, src []byte, a, b uint32) { | |||||
_, _ = src[3], dst[3] // bounds check elimination hint | |||||
if unaligned { | if unaligned { | ||||
// The compiler should optimize this code into | // The compiler should optimize this code into | ||||
// 32-bit unaligned little endian loads and stores. | // 32-bit unaligned little endian loads and stores. | ||||
@@ -27,15 +27,16 @@ func xor(dst, src []byte, u uint32) { | |||||
v |= uint32(src[1]) << 8 | v |= uint32(src[1]) << 8 | ||||
v |= uint32(src[2]) << 16 | v |= uint32(src[2]) << 16 | ||||
v |= uint32(src[3]) << 24 | v |= uint32(src[3]) << 24 | ||||
v ^= u | |||||
v ^= a + b | |||||
dst[0] = byte(v) | dst[0] = byte(v) | ||||
dst[1] = byte(v >> 8) | dst[1] = byte(v >> 8) | ||||
dst[2] = byte(v >> 16) | dst[2] = byte(v >> 16) | ||||
dst[3] = byte(v >> 24) | dst[3] = byte(v >> 24) | ||||
} else { | } else { | ||||
dst[0] = src[0] ^ byte(u) | |||||
dst[1] = src[1] ^ byte(u>>8) | |||||
dst[2] = src[2] ^ byte(u>>16) | |||||
dst[3] = src[3] ^ byte(u>>24) | |||||
a += b | |||||
dst[0] = src[0] ^ byte(a) | |||||
dst[1] = src[1] ^ byte(a>>8) | |||||
dst[2] = src[2] ^ byte(a>>16) | |||||
dst[3] = src[3] ^ byte(a>>24) | |||||
} | } | ||||
} | } |
@@ -2,10 +2,8 @@ | |||||
// Use of this source code is governed by a BSD-style | // Use of this source code is governed by a BSD-style | ||||
// license that can be found in the LICENSE file. | // license that can be found in the LICENSE file. | ||||
// +build !amd64,!ppc64le gccgo purego | |||||
// +build !amd64,!ppc64le,!s390x gccgo purego | |||||
package poly1305 | package poly1305 | ||||
type mac struct{ macGeneric } | type mac struct{ macGeneric } | ||||
func newMAC(key *[32]byte) mac { return mac{newMACGeneric(key)} } |
@@ -26,7 +26,9 @@ const TagSize = 16 | |||||
// 16-byte result into out. Authenticating two different messages with the same | // 16-byte result into out. Authenticating two different messages with the same | ||||
// key allows an attacker to forge messages at will. | // key allows an attacker to forge messages at will. | ||||
func Sum(out *[16]byte, m []byte, key *[32]byte) { | func Sum(out *[16]byte, m []byte, key *[32]byte) { | ||||
sum(out, m, key) | |||||
h := New(key) | |||||
h.Write(m) | |||||
h.Sum(out[:0]) | |||||
} | } | ||||
// Verify returns true if mac is a valid authenticator for m with the given key. | // Verify returns true if mac is a valid authenticator for m with the given key. | ||||
@@ -46,10 +48,9 @@ func Verify(mac *[16]byte, m []byte, key *[32]byte) bool { | |||||
// two different messages with the same key allows an attacker | // two different messages with the same key allows an attacker | ||||
// to forge messages at will. | // to forge messages at will. | ||||
func New(key *[32]byte) *MAC { | func New(key *[32]byte) *MAC { | ||||
return &MAC{ | |||||
mac: newMAC(key), | |||||
finalized: false, | |||||
} | |||||
m := &MAC{} | |||||
initialize(key, &m.macState) | |||||
return m | |||||
} | } | ||||
// MAC is an io.Writer computing an authentication tag | // MAC is an io.Writer computing an authentication tag | ||||
@@ -58,7 +59,7 @@ func New(key *[32]byte) *MAC { | |||||
// MAC cannot be used like common hash.Hash implementations, | // MAC cannot be used like common hash.Hash implementations, | ||||
// because using a poly1305 key twice breaks its security. | // because using a poly1305 key twice breaks its security. | ||||
// Therefore writing data to a running MAC after calling | // Therefore writing data to a running MAC after calling | ||||
// Sum causes it to panic. | |||||
// Sum or Verify causes it to panic. | |||||
type MAC struct { | type MAC struct { | ||||
mac // platform-dependent implementation | mac // platform-dependent implementation | ||||
@@ -71,10 +72,10 @@ func (h *MAC) Size() int { return TagSize } | |||||
// Write adds more data to the running message authentication code. | // Write adds more data to the running message authentication code. | ||||
// It never returns an error. | // It never returns an error. | ||||
// | // | ||||
// It must not be called after the first call of Sum. | |||||
// It must not be called after the first call of Sum or Verify. | |||||
func (h *MAC) Write(p []byte) (n int, err error) { | func (h *MAC) Write(p []byte) (n int, err error) { | ||||
if h.finalized { | if h.finalized { | ||||
panic("poly1305: write to MAC after Sum") | |||||
panic("poly1305: write to MAC after Sum or Verify") | |||||
} | } | ||||
return h.mac.Write(p) | return h.mac.Write(p) | ||||
} | } | ||||
@@ -87,3 +88,12 @@ func (h *MAC) Sum(b []byte) []byte { | |||||
h.finalized = true | h.finalized = true | ||||
return append(b, mac[:]...) | return append(b, mac[:]...) | ||||
} | } | ||||
// Verify returns whether the authenticator of all data written to | |||||
// the message authentication code matches the expected value. | |||||
func (h *MAC) Verify(expected []byte) bool { | |||||
var mac [TagSize]byte | |||||
h.mac.Sum(&mac) | |||||
h.finalized = true | |||||
return subtle.ConstantTimeCompare(expected, mac[:]) == 1 | |||||
} |
@@ -9,17 +9,6 @@ package poly1305 | |||||
//go:noescape | //go:noescape | ||||
func update(state *macState, msg []byte) | func update(state *macState, msg []byte) | ||||
func sum(out *[16]byte, m []byte, key *[32]byte) { | |||||
h := newMAC(key) | |||||
h.Write(m) | |||||
h.Sum(out) | |||||
} | |||||
func newMAC(key *[32]byte) (h mac) { | |||||
initialize(key, &h.r, &h.s) | |||||
return | |||||
} | |||||
// mac is a wrapper for macGeneric that redirects calls that would have gone to | // mac is a wrapper for macGeneric that redirects calls that would have gone to | ||||
// updateGeneric to update. | // updateGeneric to update. | ||||
// | // | ||||
@@ -31,16 +31,18 @@ func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) { | |||||
h.Sum(out) | h.Sum(out) | ||||
} | } | ||||
func newMACGeneric(key *[32]byte) (h macGeneric) { | |||||
initialize(key, &h.r, &h.s) | |||||
return | |||||
func newMACGeneric(key *[32]byte) macGeneric { | |||||
m := macGeneric{} | |||||
initialize(key, &m.macState) | |||||
return m | |||||
} | } | ||||
// macState holds numbers in saturated 64-bit little-endian limbs. That is, | // macState holds numbers in saturated 64-bit little-endian limbs. That is, | ||||
// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸. | // the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸. | ||||
type macState struct { | type macState struct { | ||||
// h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but | // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but | ||||
// can grow larger during and after rounds. | |||||
// can grow larger during and after rounds. It must, however, remain below | |||||
// 2 * (2¹³⁰ - 5). | |||||
h [3]uint64 | h [3]uint64 | ||||
// r and s are the private key components. | // r and s are the private key components. | ||||
r [2]uint64 | r [2]uint64 | ||||
@@ -97,11 +99,12 @@ const ( | |||||
rMask1 = 0x0FFFFFFC0FFFFFFC | rMask1 = 0x0FFFFFFC0FFFFFFC | ||||
) | ) | ||||
func initialize(key *[32]byte, r, s *[2]uint64) { | |||||
r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0 | |||||
r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1 | |||||
s[0] = binary.LittleEndian.Uint64(key[16:24]) | |||||
s[1] = binary.LittleEndian.Uint64(key[24:32]) | |||||
// initialize loads the 256-bit key into the two 128-bit secret values r and s. | |||||
func initialize(key *[32]byte, m *macState) { | |||||
m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0 | |||||
m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1 | |||||
m.s[0] = binary.LittleEndian.Uint64(key[16:24]) | |||||
m.s[1] = binary.LittleEndian.Uint64(key[24:32]) | |||||
} | } | ||||
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the | // uint128 holds a 128-bit number as two 64-bit limbs, for use with the | ||||
@@ -1,13 +0,0 @@ | |||||
// Copyright 2018 The Go Authors. All rights reserved. | |||||
// Use of this source code is governed by a BSD-style | |||||
// license that can be found in the LICENSE file. | |||||
// +build s390x,!go1.11 !amd64,!s390x,!ppc64le gccgo purego | |||||
package poly1305 | |||||
func sum(out *[TagSize]byte, msg []byte, key *[32]byte) { | |||||
h := newMAC(key) | |||||
h.Write(msg) | |||||
h.Sum(out) | |||||
} |
@@ -9,17 +9,6 @@ package poly1305 | |||||
//go:noescape | //go:noescape | ||||
func update(state *macState, msg []byte) | func update(state *macState, msg []byte) | ||||
func sum(out *[16]byte, m []byte, key *[32]byte) { | |||||
h := newMAC(key) | |||||
h.Write(m) | |||||
h.Sum(out) | |||||
} | |||||
func newMAC(key *[32]byte) (h mac) { | |||||
initialize(key, &h.r, &h.s) | |||||
return | |||||
} | |||||
// mac is a wrapper for macGeneric that redirects calls that would have gone to | // mac is a wrapper for macGeneric that redirects calls that would have gone to | ||||
// updateGeneric to update. | // updateGeneric to update. | ||||
// | // | ||||
@@ -2,7 +2,7 @@ | |||||
// Use of this source code is governed by a BSD-style | // Use of this source code is governed by a BSD-style | ||||
// license that can be found in the LICENSE file. | // license that can be found in the LICENSE file. | ||||
// +build go1.11,!gccgo,!purego | |||||
// +build !gccgo,!purego | |||||
package poly1305 | package poly1305 | ||||
@@ -10,30 +10,66 @@ import ( | |||||
"golang.org/x/sys/cpu" | "golang.org/x/sys/cpu" | ||||
) | ) | ||||
// poly1305vx is an assembly implementation of Poly1305 that uses vector | |||||
// updateVX is an assembly implementation of Poly1305 that uses vector | |||||
// instructions. It must only be called if the vector facility (vx) is | // instructions. It must only be called if the vector facility (vx) is | ||||
// available. | // available. | ||||
//go:noescape | //go:noescape | ||||
func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]byte) | |||||
func updateVX(state *macState, msg []byte) | |||||
// poly1305vmsl is an assembly implementation of Poly1305 that uses vector | |||||
// instructions, including VMSL. It must only be called if the vector facility (vx) is | |||||
// available and if VMSL is supported. | |||||
//go:noescape | |||||
func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]byte) | |||||
// mac is a replacement for macGeneric that uses a larger buffer and redirects | |||||
// calls that would have gone to updateGeneric to updateVX if the vector | |||||
// facility is installed. | |||||
// | |||||
// A larger buffer is required for good performance because the vector | |||||
// implementation has a higher fixed cost per call than the generic | |||||
// implementation. | |||||
type mac struct { | |||||
macState | |||||
buffer [16 * TagSize]byte // size must be a multiple of block size (16) | |||||
offset int | |||||
} | |||||
func sum(out *[16]byte, m []byte, key *[32]byte) { | |||||
if cpu.S390X.HasVX { | |||||
var mPtr *byte | |||||
if len(m) > 0 { | |||||
mPtr = &m[0] | |||||
func (h *mac) Write(p []byte) (int, error) { | |||||
nn := len(p) | |||||
if h.offset > 0 { | |||||
n := copy(h.buffer[h.offset:], p) | |||||
if h.offset+n < len(h.buffer) { | |||||
h.offset += n | |||||
return nn, nil | |||||
} | } | ||||
if cpu.S390X.HasVXE && len(m) > 256 { | |||||
poly1305vmsl(out, mPtr, uint64(len(m)), key) | |||||
p = p[n:] | |||||
h.offset = 0 | |||||
if cpu.S390X.HasVX { | |||||
updateVX(&h.macState, h.buffer[:]) | |||||
} else { | } else { | ||||
poly1305vx(out, mPtr, uint64(len(m)), key) | |||||
updateGeneric(&h.macState, h.buffer[:]) | |||||
} | } | ||||
} else { | |||||
sumGeneric(out, m, key) | |||||
} | } | ||||
tail := len(p) % len(h.buffer) // number of bytes to copy into buffer | |||||
body := len(p) - tail // number of bytes to process now | |||||
if body > 0 { | |||||
if cpu.S390X.HasVX { | |||||
updateVX(&h.macState, p[:body]) | |||||
} else { | |||||
updateGeneric(&h.macState, p[:body]) | |||||
} | |||||
} | |||||
h.offset = copy(h.buffer[:], p[body:]) // copy tail bytes - can be 0 | |||||
return nn, nil | |||||
} | |||||
func (h *mac) Sum(out *[TagSize]byte) { | |||||
state := h.macState | |||||
remainder := h.buffer[:h.offset] | |||||
// Use the generic implementation if we have 2 or fewer blocks left | |||||
// to sum. The vector implementation has a higher startup time. | |||||
if cpu.S390X.HasVX && len(remainder) > 2*TagSize { | |||||
updateVX(&state, remainder) | |||||
} else if len(remainder) > 0 { | |||||
updateGeneric(&state, remainder) | |||||
} | |||||
finalize(out, &state.h, &state.s) | |||||
} | } |
@@ -2,115 +2,187 @@ | |||||
// Use of this source code is governed by a BSD-style | // Use of this source code is governed by a BSD-style | ||||
// license that can be found in the LICENSE file. | // license that can be found in the LICENSE file. | ||||
// +build go1.11,!gccgo,!purego | |||||
// +build !gccgo,!purego | |||||
#include "textflag.h" | #include "textflag.h" | ||||
// Implementation of Poly1305 using the vector facility (vx). | |||||
// constants | |||||
#define MOD26 V0 | |||||
#define EX0 V1 | |||||
#define EX1 V2 | |||||
#define EX2 V3 | |||||
// temporaries | |||||
#define T_0 V4 | |||||
#define T_1 V5 | |||||
#define T_2 V6 | |||||
#define T_3 V7 | |||||
#define T_4 V8 | |||||
// key (r) | |||||
#define R_0 V9 | |||||
#define R_1 V10 | |||||
#define R_2 V11 | |||||
#define R_3 V12 | |||||
#define R_4 V13 | |||||
#define R5_1 V14 | |||||
#define R5_2 V15 | |||||
#define R5_3 V16 | |||||
#define R5_4 V17 | |||||
#define RSAVE_0 R5 | |||||
#define RSAVE_1 R6 | |||||
#define RSAVE_2 R7 | |||||
#define RSAVE_3 R8 | |||||
#define RSAVE_4 R9 | |||||
#define R5SAVE_1 V28 | |||||
#define R5SAVE_2 V29 | |||||
#define R5SAVE_3 V30 | |||||
#define R5SAVE_4 V31 | |||||
// message block | |||||
#define F_0 V18 | |||||
#define F_1 V19 | |||||
#define F_2 V20 | |||||
#define F_3 V21 | |||||
#define F_4 V22 | |||||
// accumulator | |||||
#define H_0 V23 | |||||
#define H_1 V24 | |||||
#define H_2 V25 | |||||
#define H_3 V26 | |||||
#define H_4 V27 | |||||
GLOBL ·keyMask<>(SB), RODATA, $16 | |||||
DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f | |||||
DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f | |||||
GLOBL ·bswapMask<>(SB), RODATA, $16 | |||||
DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908 | |||||
DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100 | |||||
GLOBL ·constants<>(SB), RODATA, $64 | |||||
// MOD26 | |||||
DATA ·constants<>+0(SB)/8, $0x3ffffff | |||||
DATA ·constants<>+8(SB)/8, $0x3ffffff | |||||
// This implementation of Poly1305 uses the vector facility (vx) | |||||
// to process up to 2 blocks (32 bytes) per iteration using an | |||||
// algorithm based on the one described in: | |||||
// | |||||
// NEON crypto, Daniel J. Bernstein & Peter Schwabe | |||||
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf | |||||
// | |||||
// This algorithm uses 5 26-bit limbs to represent a 130-bit | |||||
// value. These limbs are, for the most part, zero extended and | |||||
// placed into 64-bit vector register elements. Each vector | |||||
// register is 128-bits wide and so holds 2 of these elements. | |||||
// Using 26-bit limbs allows us plenty of headroom to accomodate | |||||
// accumulations before and after multiplication without | |||||
// overflowing either 32-bits (before multiplication) or 64-bits | |||||
// (after multiplication). | |||||
// | |||||
// In order to parallelise the operations required to calculate | |||||
// the sum we use two separate accumulators and then sum those | |||||
// in an extra final step. For compatibility with the generic | |||||
// implementation we perform this summation at the end of every | |||||
// updateVX call. | |||||
// | |||||
// To use two accumulators we must multiply the message blocks | |||||
// by r² rather than r. Only the final message block should be | |||||
// multiplied by r. | |||||
// | |||||
// Example: | |||||
// | |||||
// We want to calculate the sum (h) for a 64 byte message (m): | |||||
// | |||||
// h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r | |||||
// | |||||
// To do this we split the calculation into the even indices | |||||
// and odd indices of the message. These form our SIMD 'lanes': | |||||
// | |||||
// h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0 | |||||
// m[16:32]r³ + m[48:64]r <- lane 1 | |||||
// | |||||
// To calculate this iteratively we refactor so that both lanes | |||||
// are written in terms of r² and r: | |||||
// | |||||
// h = (m[ 0:16]r² + m[32:48])r² + <- lane 0 | |||||
// (m[16:32]r² + m[48:64])r <- lane 1 | |||||
// ^ ^ | |||||
// | coefficients for second iteration | |||||
// coefficients for first iteration | |||||
// | |||||
// So in this case we would have two iterations. In the first | |||||
// both lanes are multiplied by r². In the second only the | |||||
// first lane is multiplied by r² and the second lane is | |||||
// instead multiplied by r. This gives use the odd and even | |||||
// powers of r that we need from the original equation. | |||||
// | |||||
// Notation: | |||||
// | |||||
// h - accumulator | |||||
// r - key | |||||
// m - message | |||||
// | |||||
// [a, b] - SIMD register holding two 64-bit values | |||||
// [a, b, c, d] - SIMD register holding four 32-bit values | |||||
// xᵢ[n] - limb n of variable x with bit width i | |||||
// | |||||
// Limbs are expressed in little endian order, so for 26-bit | |||||
// limbs x₂₆[4] will be the most significant limb and x₂₆[0] | |||||
// will be the least significant limb. | |||||
// masking constants | |||||
#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits | |||||
#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits | |||||
// expansion constants (see EXPAND macro) | |||||
#define EX0 V2 | |||||
#define EX1 V3 | |||||
#define EX2 V4 | |||||
// key (r², r or 1 depending on context) | |||||
#define R_0 V5 | |||||
#define R_1 V6 | |||||
#define R_2 V7 | |||||
#define R_3 V8 | |||||
#define R_4 V9 | |||||
// precalculated coefficients (5r², 5r or 0 depending on context) | |||||
#define R5_1 V10 | |||||
#define R5_2 V11 | |||||
#define R5_3 V12 | |||||
#define R5_4 V13 | |||||
// message block (m) | |||||
#define M_0 V14 | |||||
#define M_1 V15 | |||||
#define M_2 V16 | |||||
#define M_3 V17 | |||||
#define M_4 V18 | |||||
// accumulator (h) | |||||
#define H_0 V19 | |||||
#define H_1 V20 | |||||
#define H_2 V21 | |||||
#define H_3 V22 | |||||
#define H_4 V23 | |||||
// temporary registers (for short-lived values) | |||||
#define T_0 V24 | |||||
#define T_1 V25 | |||||
#define T_2 V26 | |||||
#define T_3 V27 | |||||
#define T_4 V28 | |||||
GLOBL ·constants<>(SB), RODATA, $0x30 | |||||
// EX0 | // EX0 | ||||
DATA ·constants<>+16(SB)/8, $0x0006050403020100 | |||||
DATA ·constants<>+24(SB)/8, $0x1016151413121110 | |||||
DATA ·constants<>+0x00(SB)/8, $0x0006050403020100 | |||||
DATA ·constants<>+0x08(SB)/8, $0x1016151413121110 | |||||
// EX1 | // EX1 | ||||
DATA ·constants<>+32(SB)/8, $0x060c0b0a09080706 | |||||
DATA ·constants<>+40(SB)/8, $0x161c1b1a19181716 | |||||
DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706 | |||||
DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716 | |||||
// EX2 | // EX2 | ||||
DATA ·constants<>+48(SB)/8, $0x0d0d0d0d0d0f0e0d | |||||
DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d | |||||
// h = (f*g) % (2**130-5) [partial reduction] | |||||
DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d | |||||
DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d | |||||
// MULTIPLY multiplies each lane of f and g, partially reduced | |||||
// modulo 2¹³⁰ - 5. The result, h, consists of partial products | |||||
// in each lane that need to be reduced further to produce the | |||||
// final result. | |||||
// | |||||
// h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰ | |||||
// | |||||
// Note that the multiplication by 5 of the high bits is | |||||
// achieved by precalculating the multiplication of four of the | |||||
// g coefficients by 5. These are g51-g54. | |||||
#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \ | #define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \ | ||||
VMLOF f0, g0, h0 \ | VMLOF f0, g0, h0 \ | ||||
VMLOF f0, g1, h1 \ | |||||
VMLOF f0, g2, h2 \ | |||||
VMLOF f0, g3, h3 \ | VMLOF f0, g3, h3 \ | ||||
VMLOF f0, g1, h1 \ | |||||
VMLOF f0, g4, h4 \ | VMLOF f0, g4, h4 \ | ||||
VMLOF f0, g2, h2 \ | |||||
VMLOF f1, g54, T_0 \ | VMLOF f1, g54, T_0 \ | ||||
VMLOF f1, g0, T_1 \ | |||||
VMLOF f1, g1, T_2 \ | |||||
VMLOF f1, g2, T_3 \ | VMLOF f1, g2, T_3 \ | ||||
VMLOF f1, g0, T_1 \ | |||||
VMLOF f1, g3, T_4 \ | VMLOF f1, g3, T_4 \ | ||||
VMLOF f1, g1, T_2 \ | |||||
VMALOF f2, g53, h0, h0 \ | VMALOF f2, g53, h0, h0 \ | ||||
VMALOF f2, g54, h1, h1 \ | |||||
VMALOF f2, g0, h2, h2 \ | |||||
VMALOF f2, g1, h3, h3 \ | VMALOF f2, g1, h3, h3 \ | ||||
VMALOF f2, g54, h1, h1 \ | |||||
VMALOF f2, g2, h4, h4 \ | VMALOF f2, g2, h4, h4 \ | ||||
VMALOF f2, g0, h2, h2 \ | |||||
VMALOF f3, g52, T_0, T_0 \ | VMALOF f3, g52, T_0, T_0 \ | ||||
VMALOF f3, g53, T_1, T_1 \ | |||||
VMALOF f3, g54, T_2, T_2 \ | |||||
VMALOF f3, g0, T_3, T_3 \ | VMALOF f3, g0, T_3, T_3 \ | ||||
VMALOF f3, g53, T_1, T_1 \ | |||||
VMALOF f3, g1, T_4, T_4 \ | VMALOF f3, g1, T_4, T_4 \ | ||||
VMALOF f3, g54, T_2, T_2 \ | |||||
VMALOF f4, g51, h0, h0 \ | VMALOF f4, g51, h0, h0 \ | ||||
VMALOF f4, g52, h1, h1 \ | |||||
VMALOF f4, g53, h2, h2 \ | |||||
VMALOF f4, g54, h3, h3 \ | VMALOF f4, g54, h3, h3 \ | ||||
VMALOF f4, g52, h1, h1 \ | |||||
VMALOF f4, g0, h4, h4 \ | VMALOF f4, g0, h4, h4 \ | ||||
VMALOF f4, g53, h2, h2 \ | |||||
VAG T_0, h0, h0 \ | VAG T_0, h0, h0 \ | ||||
VAG T_1, h1, h1 \ | |||||
VAG T_2, h2, h2 \ | |||||
VAG T_3, h3, h3 \ | VAG T_3, h3, h3 \ | ||||
VAG T_4, h4, h4 | |||||
// carry h0->h1 h3->h4, h1->h2 h4->h0, h0->h1 h2->h3, h3->h4 | |||||
VAG T_1, h1, h1 \ | |||||
VAG T_4, h4, h4 \ | |||||
VAG T_2, h2, h2 | |||||
// REDUCE performs the following carry operations in four | |||||
// stages, as specified in Bernstein & Schwabe: | |||||
// | |||||
// 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4] | |||||
// 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0] | |||||
// 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3] | |||||
// 4: h₂₆[3]->h₂₆[4] | |||||
// | |||||
// The result is that all of the limbs are limited to 26-bits | |||||
// except for h₂₆[1] and h₂₆[4] which are limited to 27-bits. | |||||
// | |||||
// Note that although each limb is aligned at 26-bit intervals | |||||
// they may contain values that exceed 2²⁶ - 1, hence the need | |||||
// to carry the excess bits in each limb. | |||||
#define REDUCE(h0, h1, h2, h3, h4) \ | #define REDUCE(h0, h1, h2, h3, h4) \ | ||||
VESRLG $26, h0, T_0 \ | VESRLG $26, h0, T_0 \ | ||||
VESRLG $26, h3, T_1 \ | VESRLG $26, h3, T_1 \ | ||||
@@ -136,144 +208,155 @@ DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d | |||||
VN MOD26, h3, h3 \ | VN MOD26, h3, h3 \ | ||||
VAG T_2, h4, h4 | VAG T_2, h4, h4 | ||||
// expand in0 into d[0] and in1 into d[1] | |||||
// EXPAND splits the 128-bit little-endian values in0 and in1 | |||||
// into 26-bit big-endian limbs and places the results into | |||||
// the first and second lane of d₂₆[0:4] respectively. | |||||
// | |||||
// The EX0, EX1 and EX2 constants are arrays of byte indices | |||||
// for permutation. The permutation both reverses the bytes | |||||
// in the input and ensures the bytes are copied into the | |||||
// destination limb ready to be shifted into their final | |||||
// position. | |||||
#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \ | #define EXPAND(in0, in1, d0, d1, d2, d3, d4) \ | ||||
VGBM $0x0707, d1 \ // d1=tmp | |||||
VPERM in0, in1, EX2, d4 \ | |||||
VPERM in0, in1, EX0, d0 \ | VPERM in0, in1, EX0, d0 \ | ||||
VPERM in0, in1, EX1, d2 \ | VPERM in0, in1, EX1, d2 \ | ||||
VN d1, d4, d4 \ | |||||
VPERM in0, in1, EX2, d4 \ | |||||
VESRLG $26, d0, d1 \ | VESRLG $26, d0, d1 \ | ||||
VESRLG $30, d2, d3 \ | VESRLG $30, d2, d3 \ | ||||
VESRLG $4, d2, d2 \ | VESRLG $4, d2, d2 \ | ||||
VN MOD26, d0, d0 \ | |||||
VN MOD26, d1, d1 \ | |||||
VN MOD26, d2, d2 \ | |||||
VN MOD26, d3, d3 | |||||
// pack h4:h0 into h1:h0 (no carry) | |||||
#define PACK(h0, h1, h2, h3, h4) \ | |||||
VESLG $26, h1, h1 \ | |||||
VESLG $26, h3, h3 \ | |||||
VO h0, h1, h0 \ | |||||
VO h2, h3, h2 \ | |||||
VESLG $4, h2, h2 \ | |||||
VLEIB $7, $48, h1 \ | |||||
VSLB h1, h2, h2 \ | |||||
VO h0, h2, h0 \ | |||||
VLEIB $7, $104, h1 \ | |||||
VSLB h1, h4, h3 \ | |||||
VO h3, h0, h0 \ | |||||
VLEIB $7, $24, h1 \ | |||||
VSRLB h1, h4, h1 | |||||
// if h > 2**130-5 then h -= 2**130-5 | |||||
#define MOD(h0, h1, t0, t1, t2) \ | |||||
VZERO t0 \ | |||||
VLEIG $1, $5, t0 \ | |||||
VACCQ h0, t0, t1 \ | |||||
VAQ h0, t0, t0 \ | |||||
VONE t2 \ | |||||
VLEIG $1, $-4, t2 \ | |||||
VAQ t2, t1, t1 \ | |||||
VACCQ h1, t1, t1 \ | |||||
VONE t2 \ | |||||
VAQ t2, t1, t1 \ | |||||
VN h0, t1, t2 \ | |||||
VNC t0, t1, t1 \ | |||||
VO t1, t2, h0 | |||||
// func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]key) | |||||
TEXT ·poly1305vx(SB), $0-32 | |||||
// This code processes up to 2 blocks (32 bytes) per iteration | |||||
// using the algorithm described in: | |||||
// NEON crypto, Daniel J. Bernstein & Peter Schwabe | |||||
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf | |||||
LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key | |||||
// load MOD26, EX0, EX1 and EX2 | |||||
VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]] | |||||
VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]] | |||||
VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]] | |||||
VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]] | |||||
VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]] | |||||
// func updateVX(state *macState, msg []byte) | |||||
TEXT ·updateVX(SB), NOSPLIT, $0 | |||||
MOVD state+0(FP), R1 | |||||
LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len | |||||
// load EX0, EX1 and EX2 | |||||
MOVD $·constants<>(SB), R5 | MOVD $·constants<>(SB), R5 | ||||
VLM (R5), MOD26, EX2 | |||||
// setup r | |||||
VL (R4), T_0 | |||||
MOVD $·keyMask<>(SB), R6 | |||||
VL (R6), T_1 | |||||
VN T_0, T_1, T_0 | |||||
EXPAND(T_0, T_0, R_0, R_1, R_2, R_3, R_4) | |||||
// setup r*5 | |||||
VLEIG $0, $5, T_0 | |||||
VLEIG $1, $5, T_0 | |||||
// store r (for final block) | |||||
VMLOF T_0, R_1, R5SAVE_1 | |||||
VMLOF T_0, R_2, R5SAVE_2 | |||||
VMLOF T_0, R_3, R5SAVE_3 | |||||
VMLOF T_0, R_4, R5SAVE_4 | |||||
VLGVG $0, R_0, RSAVE_0 | |||||
VLGVG $0, R_1, RSAVE_1 | |||||
VLGVG $0, R_2, RSAVE_2 | |||||
VLGVG $0, R_3, RSAVE_3 | |||||
VLGVG $0, R_4, RSAVE_4 | |||||
// skip r**2 calculation | |||||
VLM (R5), EX0, EX2 | |||||
// generate masks | |||||
VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff] | |||||
VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff] | |||||
// load h (accumulator) and r (key) from state | |||||
VZERO T_1 // [0, 0] | |||||
VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]] | |||||
VLEG $0, 16(R1), T_1 // [h₆₄[2], 0] | |||||
VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]] | |||||
VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]] | |||||
VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]] | |||||
// unpack h and r into 26-bit limbs | |||||
// note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value | |||||
VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]] | |||||
VZERO H_1 // [0, 0] | |||||
VZERO H_3 // [0, 0] | |||||
VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out | |||||
VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0] | |||||
VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]] | |||||
VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only | |||||
VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]] | |||||
VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only | |||||
VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete | |||||
VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete | |||||
// replicate r across all 4 vector elements | |||||
VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]] | |||||
VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]] | |||||
VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]] | |||||
VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]] | |||||
VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]] | |||||
// zero out lane 1 of h | |||||
VLEIG $1, $0, H_0 // [h₂₆[0], 0] | |||||
VLEIG $1, $0, H_1 // [h₂₆[1], 0] | |||||
VLEIG $1, $0, H_2 // [h₂₆[2], 0] | |||||
VLEIG $1, $0, H_3 // [h₂₆[3], 0] | |||||
VLEIG $1, $0, H_4 // [h₂₆[4], 0] | |||||
// calculate 5r (ignore least significant limb) | |||||
VREPIF $5, T_0 | |||||
VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]] | |||||
VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]] | |||||
VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]] | |||||
VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]] | |||||
// skip r² calculation if we are only calculating one block | |||||
CMPBLE R3, $16, skip | CMPBLE R3, $16, skip | ||||
// calculate r**2 | |||||
MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5SAVE_1, R5SAVE_2, R5SAVE_3, R5SAVE_4, H_0, H_1, H_2, H_3, H_4) | |||||
REDUCE(H_0, H_1, H_2, H_3, H_4) | |||||
VLEIG $0, $5, T_0 | |||||
VLEIG $1, $5, T_0 | |||||
VMLOF T_0, H_1, R5_1 | |||||
VMLOF T_0, H_2, R5_2 | |||||
VMLOF T_0, H_3, R5_3 | |||||
VMLOF T_0, H_4, R5_4 | |||||
VLR H_0, R_0 | |||||
VLR H_1, R_1 | |||||
VLR H_2, R_2 | |||||
VLR H_3, R_3 | |||||
VLR H_4, R_4 | |||||
// initialize h | |||||
VZERO H_0 | |||||
VZERO H_1 | |||||
VZERO H_2 | |||||
VZERO H_3 | |||||
VZERO H_4 | |||||
// calculate r² | |||||
MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4) | |||||
REDUCE(M_0, M_1, M_2, M_3, M_4) | |||||
VGBM $0x0f0f, T_0 | |||||
VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]] | |||||
VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]] | |||||
VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]] | |||||
VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]] | |||||
VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]] | |||||
// calculate 5r² (ignore least significant limb) | |||||
VREPIF $5, T_0 | |||||
VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]] | |||||
VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]] | |||||
VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]] | |||||
VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]] | |||||
loop: | loop: | ||||
CMPBLE R3, $32, b2 | |||||
VLM (R2), T_0, T_1 | |||||
SUB $32, R3 | |||||
MOVD $32(R2), R2 | |||||
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) | |||||
VLEIB $4, $1, F_4 | |||||
VLEIB $12, $1, F_4 | |||||
CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients | |||||
// load next 2 blocks from message | |||||
VLM (R2), T_0, T_1 | |||||
// update message slice | |||||
SUB $32, R3 | |||||
MOVD $32(R2), R2 | |||||
// unpack message blocks into 26-bit big-endian limbs | |||||
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) | |||||
// add 2¹²⁸ to each message block value | |||||
VLEIB $4, $1, M_4 | |||||
VLEIB $12, $1, M_4 | |||||
multiply: | multiply: | ||||
VAG H_0, F_0, F_0 | |||||
VAG H_1, F_1, F_1 | |||||
VAG H_2, F_2, F_2 | |||||
VAG H_3, F_3, F_3 | |||||
VAG H_4, F_4, F_4 | |||||
MULTIPLY(F_0, F_1, F_2, F_3, F_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) | |||||
// accumulate the incoming message | |||||
VAG H_0, M_0, M_0 | |||||
VAG H_3, M_3, M_3 | |||||
VAG H_1, M_1, M_1 | |||||
VAG H_4, M_4, M_4 | |||||
VAG H_2, M_2, M_2 | |||||
// multiply the accumulator by the key coefficient | |||||
MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) | |||||
// carry and partially reduce the partial products | |||||
REDUCE(H_0, H_1, H_2, H_3, H_4) | REDUCE(H_0, H_1, H_2, H_3, H_4) | ||||
CMPBNE R3, $0, loop | CMPBNE R3, $0, loop | ||||
finish: | finish: | ||||
// sum vectors | |||||
// sum lane 0 and lane 1 and put the result in lane 1 | |||||
VZERO T_0 | VZERO T_0 | ||||
VSUMQG H_0, T_0, H_0 | VSUMQG H_0, T_0, H_0 | ||||
VSUMQG H_1, T_0, H_1 | |||||
VSUMQG H_2, T_0, H_2 | |||||
VSUMQG H_3, T_0, H_3 | VSUMQG H_3, T_0, H_3 | ||||
VSUMQG H_1, T_0, H_1 | |||||
VSUMQG H_4, T_0, H_4 | VSUMQG H_4, T_0, H_4 | ||||
VSUMQG H_2, T_0, H_2 | |||||
// h may be >= 2*(2**130-5) so we need to reduce it again | |||||
// reduce again after summation | |||||
// TODO(mundaym): there might be a more efficient way to do this | |||||
// now that we only have 1 active lane. For example, we could | |||||
// simultaneously pack the values as we reduce them. | |||||
REDUCE(H_0, H_1, H_2, H_3, H_4) | REDUCE(H_0, H_1, H_2, H_3, H_4) | ||||
// carry h1->h4 | |||||
// carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1 | |||||
// TODO(mundaym): in testing this final carry was unnecessary. | |||||
// Needs a proof before it can be removed though. | |||||
VESRLG $26, H_1, T_1 | VESRLG $26, H_1, T_1 | ||||
VN MOD26, H_1, H_1 | VN MOD26, H_1, H_1 | ||||
VAQ T_1, H_2, H_2 | VAQ T_1, H_2, H_2 | ||||
@@ -284,95 +367,137 @@ finish: | |||||
VN MOD26, H_3, H_3 | VN MOD26, H_3, H_3 | ||||
VAQ T_3, H_4, H_4 | VAQ T_3, H_4, H_4 | ||||
// h is now < 2*(2**130-5) | |||||
// pack h into h1 (hi) and h0 (lo) | |||||
PACK(H_0, H_1, H_2, H_3, H_4) | |||||
// if h > 2**130-5 then h -= 2**130-5 | |||||
MOD(H_0, H_1, T_0, T_1, T_2) | |||||
// h += s | |||||
MOVD $·bswapMask<>(SB), R5 | |||||
VL (R5), T_1 | |||||
VL 16(R4), T_0 | |||||
VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big) | |||||
VAQ T_0, H_0, H_0 | |||||
VPERM H_0, H_0, T_1, H_0 // reverse bytes (to little) | |||||
VST H_0, (R1) | |||||
// h is now < 2(2¹³⁰ - 5) | |||||
// Pack each lane in h₂₆[0:4] into h₁₂₈[0:1]. | |||||
VESLG $26, H_1, H_1 | |||||
VESLG $26, H_3, H_3 | |||||
VO H_0, H_1, H_0 | |||||
VO H_2, H_3, H_2 | |||||
VESLG $4, H_2, H_2 | |||||
VLEIB $7, $48, H_1 | |||||
VSLB H_1, H_2, H_2 | |||||
VO H_0, H_2, H_0 | |||||
VLEIB $7, $104, H_1 | |||||
VSLB H_1, H_4, H_3 | |||||
VO H_3, H_0, H_0 | |||||
VLEIB $7, $24, H_1 | |||||
VSRLB H_1, H_4, H_1 | |||||
// update state | |||||
VSTEG $1, H_0, 0(R1) | |||||
VSTEG $0, H_0, 8(R1) | |||||
VSTEG $1, H_1, 16(R1) | |||||
RET | RET | ||||
b2: | |||||
b2: // 2 or fewer blocks remaining | |||||
CMPBLE R3, $16, b1 | CMPBLE R3, $16, b1 | ||||
// 2 blocks remaining | |||||
SUB $17, R3 | |||||
VL (R2), T_0 | |||||
VLL R3, 16(R2), T_1 | |||||
ADD $1, R3 | |||||
// Load the 2 remaining blocks (17-32 bytes remaining). | |||||
MOVD $-17(R3), R0 // index of final byte to load modulo 16 | |||||
VL (R2), T_0 // load full 16 byte block | |||||
VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes | |||||
// The Poly1305 algorithm requires that a 1 bit be appended to | |||||
// each message block. If the final block is less than 16 bytes | |||||
// long then it is easiest to insert the 1 before the message | |||||
// block is split into 26-bit limbs. If, on the other hand, the | |||||
// final message block is 16 bytes long then we append the 1 bit | |||||
// after expansion as normal. | |||||
MOVBZ $1, R0 | MOVBZ $1, R0 | ||||
CMPBEQ R3, $16, 2(PC) | |||||
VLVGB R3, R0, T_1 | |||||
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) | |||||
MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16) | |||||
CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long | |||||
VLVGB R3, R0, T_1 // insert 1 into the byte at index R3 | |||||
// Split both blocks into 26-bit limbs in the appropriate lanes. | |||||
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) | |||||
// Append a 1 byte to the end of the second to last block. | |||||
VLEIB $4, $1, M_4 | |||||
// Append a 1 byte to the end of the last block only if it is a | |||||
// full 16 byte block. | |||||
CMPBNE R3, $16, 2(PC) | CMPBNE R3, $16, 2(PC) | ||||
VLEIB $12, $1, F_4 | |||||
VLEIB $4, $1, F_4 | |||||
// setup [r²,r] | |||||
VLVGG $1, RSAVE_0, R_0 | |||||
VLVGG $1, RSAVE_1, R_1 | |||||
VLVGG $1, RSAVE_2, R_2 | |||||
VLVGG $1, RSAVE_3, R_3 | |||||
VLVGG $1, RSAVE_4, R_4 | |||||
VPDI $0, R5_1, R5SAVE_1, R5_1 | |||||
VPDI $0, R5_2, R5SAVE_2, R5_2 | |||||
VPDI $0, R5_3, R5SAVE_3, R5_3 | |||||
VPDI $0, R5_4, R5SAVE_4, R5_4 | |||||
VLEIB $12, $1, M_4 | |||||
// Finally, set up the coefficients for the final multiplication. | |||||
// We have previously saved r and 5r in the 32-bit even indexes | |||||
// of the R_[0-4] and R5_[1-4] coefficient registers. | |||||
// | |||||
// We want lane 0 to be multiplied by r² so that can be kept the | |||||
// same. We want lane 1 to be multiplied by r so we need to move | |||||
// the saved r value into the 32-bit odd index in lane 1 by | |||||
// rotating the 64-bit lane by 32. | |||||
VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only | |||||
VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]] | |||||
VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]] | |||||
VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]] | |||||
VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]] | |||||
VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]] | |||||
VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]] | |||||
VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]] | |||||
VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]] | |||||
VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]] | |||||
MOVD $0, R3 | MOVD $0, R3 | ||||
BR multiply | BR multiply | ||||
skip: | skip: | ||||
VZERO H_0 | |||||
VZERO H_1 | |||||
VZERO H_2 | |||||
VZERO H_3 | |||||
VZERO H_4 | |||||
CMPBEQ R3, $0, finish | CMPBEQ R3, $0, finish | ||||
b1: | |||||
// 1 block remaining | |||||
SUB $1, R3 | |||||
VLL R3, (R2), T_0 | |||||
ADD $1, R3 | |||||
b1: // 1 block remaining | |||||
// Load the final block (1-16 bytes). This will be placed into | |||||
// lane 0. | |||||
MOVD $-1(R3), R0 | |||||
VLL R0, (R2), T_0 // pad to 16 bytes with zeros | |||||
// The Poly1305 algorithm requires that a 1 bit be appended to | |||||
// each message block. If the final block is less than 16 bytes | |||||
// long then it is easiest to insert the 1 before the message | |||||
// block is split into 26-bit limbs. If, on the other hand, the | |||||
// final message block is 16 bytes long then we append the 1 bit | |||||
// after expansion as normal. | |||||
MOVBZ $1, R0 | MOVBZ $1, R0 | ||||
CMPBEQ R3, $16, 2(PC) | CMPBEQ R3, $16, 2(PC) | ||||
VLVGB R3, R0, T_0 | VLVGB R3, R0, T_0 | ||||
VZERO T_1 | |||||
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) | |||||
// Set the message block in lane 1 to the value 0 so that it | |||||
// can be accumulated without affecting the final result. | |||||
VZERO T_1 | |||||
// Split the final message block into 26-bit limbs in lane 0. | |||||
// Lane 1 will be contain 0. | |||||
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) | |||||
// Append a 1 byte to the end of the last block only if it is a | |||||
// full 16 byte block. | |||||
CMPBNE R3, $16, 2(PC) | CMPBNE R3, $16, 2(PC) | ||||
VLEIB $4, $1, F_4 | |||||
VLEIG $1, $1, R_0 | |||||
VZERO R_1 | |||||
VZERO R_2 | |||||
VZERO R_3 | |||||
VZERO R_4 | |||||
VZERO R5_1 | |||||
VZERO R5_2 | |||||
VZERO R5_3 | |||||
VZERO R5_4 | |||||
// setup [r, 1] | |||||
VLVGG $0, RSAVE_0, R_0 | |||||
VLVGG $0, RSAVE_1, R_1 | |||||
VLVGG $0, RSAVE_2, R_2 | |||||
VLVGG $0, RSAVE_3, R_3 | |||||
VLVGG $0, RSAVE_4, R_4 | |||||
VPDI $0, R5SAVE_1, R5_1, R5_1 | |||||
VPDI $0, R5SAVE_2, R5_2, R5_2 | |||||
VPDI $0, R5SAVE_3, R5_3, R5_3 | |||||
VPDI $0, R5SAVE_4, R5_4, R5_4 | |||||
VLEIB $4, $1, M_4 | |||||
// We have previously saved r and 5r in the 32-bit even indexes | |||||
// of the R_[0-4] and R5_[1-4] coefficient registers. | |||||
// | |||||
// We want lane 0 to be multiplied by r so we need to move the | |||||
// saved r value into the 32-bit odd index in lane 0. We want | |||||
// lane 1 to be set to the value 1. This makes multiplication | |||||
// a no-op. We do this by setting lane 1 in every register to 0 | |||||
// and then just setting the 32-bit index 3 in R_0 to 1. | |||||
VZERO T_0 | |||||
MOVD $0, R0 | |||||
MOVD $0x10111213, R12 | |||||
VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000] | |||||
VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0] | |||||
VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0] | |||||
VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0] | |||||
VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0] | |||||
VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0] | |||||
VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0] | |||||
VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0] | |||||
VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0] | |||||
VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0] | |||||
// Set the value of lane 1 to be 1. | |||||
VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1] | |||||
MOVD $0, R3 | MOVD $0, R3 | ||||
BR multiply | BR multiply |
@@ -1,909 +0,0 @@ | |||||
// Copyright 2018 The Go Authors. All rights reserved. | |||||
// Use of this source code is governed by a BSD-style | |||||
// license that can be found in the LICENSE file. | |||||
// +build go1.11,!gccgo,!purego | |||||
#include "textflag.h" | |||||
// Implementation of Poly1305 using the vector facility (vx) and the VMSL instruction. | |||||
// constants | |||||
#define EX0 V1 | |||||
#define EX1 V2 | |||||
#define EX2 V3 | |||||
// temporaries | |||||
#define T_0 V4 | |||||
#define T_1 V5 | |||||
#define T_2 V6 | |||||
#define T_3 V7 | |||||
#define T_4 V8 | |||||
#define T_5 V9 | |||||
#define T_6 V10 | |||||
#define T_7 V11 | |||||
#define T_8 V12 | |||||
#define T_9 V13 | |||||
#define T_10 V14 | |||||
// r**2 & r**4 | |||||
#define R_0 V15 | |||||
#define R_1 V16 | |||||
#define R_2 V17 | |||||
#define R5_1 V18 | |||||
#define R5_2 V19 | |||||
// key (r) | |||||
#define RSAVE_0 R7 | |||||
#define RSAVE_1 R8 | |||||
#define RSAVE_2 R9 | |||||
#define R5SAVE_1 R10 | |||||
#define R5SAVE_2 R11 | |||||
// message block | |||||
#define M0 V20 | |||||
#define M1 V21 | |||||
#define M2 V22 | |||||
#define M3 V23 | |||||
#define M4 V24 | |||||
#define M5 V25 | |||||
// accumulator | |||||
#define H0_0 V26 | |||||
#define H1_0 V27 | |||||
#define H2_0 V28 | |||||
#define H0_1 V29 | |||||
#define H1_1 V30 | |||||
#define H2_1 V31 | |||||
GLOBL ·keyMask<>(SB), RODATA, $16 | |||||
DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f | |||||
DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f | |||||
GLOBL ·bswapMask<>(SB), RODATA, $16 | |||||
DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908 | |||||
DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100 | |||||
GLOBL ·constants<>(SB), RODATA, $48 | |||||
// EX0 | |||||
DATA ·constants<>+0(SB)/8, $0x18191a1b1c1d1e1f | |||||
DATA ·constants<>+8(SB)/8, $0x0000050403020100 | |||||
// EX1 | |||||
DATA ·constants<>+16(SB)/8, $0x18191a1b1c1d1e1f | |||||
DATA ·constants<>+24(SB)/8, $0x00000a0908070605 | |||||
// EX2 | |||||
DATA ·constants<>+32(SB)/8, $0x18191a1b1c1d1e1f | |||||
DATA ·constants<>+40(SB)/8, $0x0000000f0e0d0c0b | |||||
GLOBL ·c<>(SB), RODATA, $48 | |||||
// EX0 | |||||
DATA ·c<>+0(SB)/8, $0x0000050403020100 | |||||
DATA ·c<>+8(SB)/8, $0x0000151413121110 | |||||
// EX1 | |||||
DATA ·c<>+16(SB)/8, $0x00000a0908070605 | |||||
DATA ·c<>+24(SB)/8, $0x00001a1918171615 | |||||
// EX2 | |||||
DATA ·c<>+32(SB)/8, $0x0000000f0e0d0c0b | |||||
DATA ·c<>+40(SB)/8, $0x0000001f1e1d1c1b | |||||
GLOBL ·reduce<>(SB), RODATA, $32 | |||||
// 44 bit | |||||
DATA ·reduce<>+0(SB)/8, $0x0 | |||||
DATA ·reduce<>+8(SB)/8, $0xfffffffffff | |||||
// 42 bit | |||||
DATA ·reduce<>+16(SB)/8, $0x0 | |||||
DATA ·reduce<>+24(SB)/8, $0x3ffffffffff | |||||
// h = (f*g) % (2**130-5) [partial reduction] | |||||
// uses T_0...T_9 temporary registers | |||||
// input: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2 | |||||
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9 | |||||
// output: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2 | |||||
#define MULTIPLY(m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) \ | |||||
\ // Eliminate the dependency for the last 2 VMSLs | |||||
VMSLG m02_0, r_2, m4_2, m4_2 \ | |||||
VMSLG m13_0, r_2, m5_2, m5_2 \ // 8 VMSLs pipelined | |||||
VMSLG m02_0, r_0, m4_0, m4_0 \ | |||||
VMSLG m02_1, r5_2, V0, T_0 \ | |||||
VMSLG m02_0, r_1, m4_1, m4_1 \ | |||||
VMSLG m02_1, r_0, V0, T_1 \ | |||||
VMSLG m02_1, r_1, V0, T_2 \ | |||||
VMSLG m02_2, r5_1, V0, T_3 \ | |||||
VMSLG m02_2, r5_2, V0, T_4 \ | |||||
VMSLG m13_0, r_0, m5_0, m5_0 \ | |||||
VMSLG m13_1, r5_2, V0, T_5 \ | |||||
VMSLG m13_0, r_1, m5_1, m5_1 \ | |||||
VMSLG m13_1, r_0, V0, T_6 \ | |||||
VMSLG m13_1, r_1, V0, T_7 \ | |||||
VMSLG m13_2, r5_1, V0, T_8 \ | |||||
VMSLG m13_2, r5_2, V0, T_9 \ | |||||
VMSLG m02_2, r_0, m4_2, m4_2 \ | |||||
VMSLG m13_2, r_0, m5_2, m5_2 \ | |||||
VAQ m4_0, T_0, m02_0 \ | |||||
VAQ m4_1, T_1, m02_1 \ | |||||
VAQ m5_0, T_5, m13_0 \ | |||||
VAQ m5_1, T_6, m13_1 \ | |||||
VAQ m02_0, T_3, m02_0 \ | |||||
VAQ m02_1, T_4, m02_1 \ | |||||
VAQ m13_0, T_8, m13_0 \ | |||||
VAQ m13_1, T_9, m13_1 \ | |||||
VAQ m4_2, T_2, m02_2 \ | |||||
VAQ m5_2, T_7, m13_2 \ | |||||
// SQUARE uses three limbs of r and r_2*5 to output square of r | |||||
// uses T_1, T_5 and T_7 temporary registers | |||||
// input: r_0, r_1, r_2, r5_2 | |||||
// temp: TEMP0, TEMP1, TEMP2 | |||||
// output: p0, p1, p2 | |||||
#define SQUARE(r_0, r_1, r_2, r5_2, p0, p1, p2, TEMP0, TEMP1, TEMP2) \ | |||||
VMSLG r_0, r_0, p0, p0 \ | |||||
VMSLG r_1, r5_2, V0, TEMP0 \ | |||||
VMSLG r_2, r5_2, p1, p1 \ | |||||
VMSLG r_0, r_1, V0, TEMP1 \ | |||||
VMSLG r_1, r_1, p2, p2 \ | |||||
VMSLG r_0, r_2, V0, TEMP2 \ | |||||
VAQ TEMP0, p0, p0 \ | |||||
VAQ TEMP1, p1, p1 \ | |||||
VAQ TEMP2, p2, p2 \ | |||||
VAQ TEMP0, p0, p0 \ | |||||
VAQ TEMP1, p1, p1 \ | |||||
VAQ TEMP2, p2, p2 \ | |||||
// carry h0->h1->h2->h0 || h3->h4->h5->h3 | |||||
// uses T_2, T_4, T_5, T_7, T_8, T_9 | |||||
// t6, t7, t8, t9, t10, t11 | |||||
// input: h0, h1, h2, h3, h4, h5 | |||||
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11 | |||||
// output: h0, h1, h2, h3, h4, h5 | |||||
#define REDUCE(h0, h1, h2, h3, h4, h5, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) \ | |||||
VLM (R12), t6, t7 \ // 44 and 42 bit clear mask | |||||
VLEIB $7, $0x28, t10 \ // 5 byte shift mask | |||||
VREPIB $4, t8 \ // 4 bit shift mask | |||||
VREPIB $2, t11 \ // 2 bit shift mask | |||||
VSRLB t10, h0, t0 \ // h0 byte shift | |||||
VSRLB t10, h1, t1 \ // h1 byte shift | |||||
VSRLB t10, h2, t2 \ // h2 byte shift | |||||
VSRLB t10, h3, t3 \ // h3 byte shift | |||||
VSRLB t10, h4, t4 \ // h4 byte shift | |||||
VSRLB t10, h5, t5 \ // h5 byte shift | |||||
VSRL t8, t0, t0 \ // h0 bit shift | |||||
VSRL t8, t1, t1 \ // h2 bit shift | |||||
VSRL t11, t2, t2 \ // h2 bit shift | |||||
VSRL t8, t3, t3 \ // h3 bit shift | |||||
VSRL t8, t4, t4 \ // h4 bit shift | |||||
VESLG $2, t2, t9 \ // h2 carry x5 | |||||
VSRL t11, t5, t5 \ // h5 bit shift | |||||
VN t6, h0, h0 \ // h0 clear carry | |||||
VAQ t2, t9, t2 \ // h2 carry x5 | |||||
VESLG $2, t5, t9 \ // h5 carry x5 | |||||
VN t6, h1, h1 \ // h1 clear carry | |||||
VN t7, h2, h2 \ // h2 clear carry | |||||
VAQ t5, t9, t5 \ // h5 carry x5 | |||||
VN t6, h3, h3 \ // h3 clear carry | |||||
VN t6, h4, h4 \ // h4 clear carry | |||||
VN t7, h5, h5 \ // h5 clear carry | |||||
VAQ t0, h1, h1 \ // h0->h1 | |||||
VAQ t3, h4, h4 \ // h3->h4 | |||||
VAQ t1, h2, h2 \ // h1->h2 | |||||
VAQ t4, h5, h5 \ // h4->h5 | |||||
VAQ t2, h0, h0 \ // h2->h0 | |||||
VAQ t5, h3, h3 \ // h5->h3 | |||||
VREPG $1, t6, t6 \ // 44 and 42 bit masks across both halves | |||||
VREPG $1, t7, t7 \ | |||||
VSLDB $8, h0, h0, h0 \ // set up [h0/1/2, h3/4/5] | |||||
VSLDB $8, h1, h1, h1 \ | |||||
VSLDB $8, h2, h2, h2 \ | |||||
VO h0, h3, h3 \ | |||||
VO h1, h4, h4 \ | |||||
VO h2, h5, h5 \ | |||||
VESRLG $44, h3, t0 \ // 44 bit shift right | |||||
VESRLG $44, h4, t1 \ | |||||
VESRLG $42, h5, t2 \ | |||||
VN t6, h3, h3 \ // clear carry bits | |||||
VN t6, h4, h4 \ | |||||
VN t7, h5, h5 \ | |||||
VESLG $2, t2, t9 \ // multiply carry by 5 | |||||
VAQ t9, t2, t2 \ | |||||
VAQ t0, h4, h4 \ | |||||
VAQ t1, h5, h5 \ | |||||
VAQ t2, h3, h3 \ | |||||
// carry h0->h1->h2->h0 | |||||
// input: h0, h1, h2 | |||||
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8 | |||||
// output: h0, h1, h2 | |||||
#define REDUCE2(h0, h1, h2, t0, t1, t2, t3, t4, t5, t6, t7, t8) \ | |||||
VLEIB $7, $0x28, t3 \ // 5 byte shift mask | |||||
VREPIB $4, t4 \ // 4 bit shift mask | |||||
VREPIB $2, t7 \ // 2 bit shift mask | |||||
VGBM $0x003F, t5 \ // mask to clear carry bits | |||||
VSRLB t3, h0, t0 \ | |||||
VSRLB t3, h1, t1 \ | |||||
VSRLB t3, h2, t2 \ | |||||
VESRLG $4, t5, t5 \ // 44 bit clear mask | |||||
VSRL t4, t0, t0 \ | |||||
VSRL t4, t1, t1 \ | |||||
VSRL t7, t2, t2 \ | |||||
VESRLG $2, t5, t6 \ // 42 bit clear mask | |||||
VESLG $2, t2, t8 \ | |||||
VAQ t8, t2, t2 \ | |||||
VN t5, h0, h0 \ | |||||
VN t5, h1, h1 \ | |||||
VN t6, h2, h2 \ | |||||
VAQ t0, h1, h1 \ | |||||
VAQ t1, h2, h2 \ | |||||
VAQ t2, h0, h0 \ | |||||
VSRLB t3, h0, t0 \ | |||||
VSRLB t3, h1, t1 \ | |||||
VSRLB t3, h2, t2 \ | |||||
VSRL t4, t0, t0 \ | |||||
VSRL t4, t1, t1 \ | |||||
VSRL t7, t2, t2 \ | |||||
VN t5, h0, h0 \ | |||||
VN t5, h1, h1 \ | |||||
VESLG $2, t2, t8 \ | |||||
VN t6, h2, h2 \ | |||||
VAQ t0, h1, h1 \ | |||||
VAQ t8, t2, t2 \ | |||||
VAQ t1, h2, h2 \ | |||||
VAQ t2, h0, h0 \ | |||||
// expands two message blocks into the lower halfs of the d registers | |||||
// moves the contents of the d registers into upper halfs | |||||
// input: in1, in2, d0, d1, d2, d3, d4, d5 | |||||
// temp: TEMP0, TEMP1, TEMP2, TEMP3 | |||||
// output: d0, d1, d2, d3, d4, d5 | |||||
#define EXPACC(in1, in2, d0, d1, d2, d3, d4, d5, TEMP0, TEMP1, TEMP2, TEMP3) \ | |||||
VGBM $0xff3f, TEMP0 \ | |||||
VGBM $0xff1f, TEMP1 \ | |||||
VESLG $4, d1, TEMP2 \ | |||||
VESLG $4, d4, TEMP3 \ | |||||
VESRLG $4, TEMP0, TEMP0 \ | |||||
VPERM in1, d0, EX0, d0 \ | |||||
VPERM in2, d3, EX0, d3 \ | |||||
VPERM in1, d2, EX2, d2 \ | |||||
VPERM in2, d5, EX2, d5 \ | |||||
VPERM in1, TEMP2, EX1, d1 \ | |||||
VPERM in2, TEMP3, EX1, d4 \ | |||||
VN TEMP0, d0, d0 \ | |||||
VN TEMP0, d3, d3 \ | |||||
VESRLG $4, d1, d1 \ | |||||
VESRLG $4, d4, d4 \ | |||||
VN TEMP1, d2, d2 \ | |||||
VN TEMP1, d5, d5 \ | |||||
VN TEMP0, d1, d1 \ | |||||
VN TEMP0, d4, d4 \ | |||||
// expands one message block into the lower halfs of the d registers | |||||
// moves the contents of the d registers into upper halfs | |||||
// input: in, d0, d1, d2 | |||||
// temp: TEMP0, TEMP1, TEMP2 | |||||
// output: d0, d1, d2 | |||||
#define EXPACC2(in, d0, d1, d2, TEMP0, TEMP1, TEMP2) \ | |||||
VGBM $0xff3f, TEMP0 \ | |||||
VESLG $4, d1, TEMP2 \ | |||||
VGBM $0xff1f, TEMP1 \ | |||||
VPERM in, d0, EX0, d0 \ | |||||
VESRLG $4, TEMP0, TEMP0 \ | |||||
VPERM in, d2, EX2, d2 \ | |||||
VPERM in, TEMP2, EX1, d1 \ | |||||
VN TEMP0, d0, d0 \ | |||||
VN TEMP1, d2, d2 \ | |||||
VESRLG $4, d1, d1 \ | |||||
VN TEMP0, d1, d1 \ | |||||
// pack h2:h0 into h1:h0 (no carry) | |||||
// input: h0, h1, h2 | |||||
// output: h0, h1, h2 | |||||
#define PACK(h0, h1, h2) \ | |||||
VMRLG h1, h2, h2 \ // copy h1 to upper half h2 | |||||
VESLG $44, h1, h1 \ // shift limb 1 44 bits, leaving 20 | |||||
VO h0, h1, h0 \ // combine h0 with 20 bits from limb 1 | |||||
VESRLG $20, h2, h1 \ // put top 24 bits of limb 1 into h1 | |||||
VLEIG $1, $0, h1 \ // clear h2 stuff from lower half of h1 | |||||
VO h0, h1, h0 \ // h0 now has 88 bits (limb 0 and 1) | |||||
VLEIG $0, $0, h2 \ // clear upper half of h2 | |||||
VESRLG $40, h2, h1 \ // h1 now has upper two bits of result | |||||
VLEIB $7, $88, h1 \ // for byte shift (11 bytes) | |||||
VSLB h1, h2, h2 \ // shift h2 11 bytes to the left | |||||
VO h0, h2, h0 \ // combine h0 with 20 bits from limb 1 | |||||
VLEIG $0, $0, h1 \ // clear upper half of h1 | |||||
// if h > 2**130-5 then h -= 2**130-5 | |||||
// input: h0, h1 | |||||
// temp: t0, t1, t2 | |||||
// output: h0 | |||||
#define MOD(h0, h1, t0, t1, t2) \ | |||||
VZERO t0 \ | |||||
VLEIG $1, $5, t0 \ | |||||
VACCQ h0, t0, t1 \ | |||||
VAQ h0, t0, t0 \ | |||||
VONE t2 \ | |||||
VLEIG $1, $-4, t2 \ | |||||
VAQ t2, t1, t1 \ | |||||
VACCQ h1, t1, t1 \ | |||||
VONE t2 \ | |||||
VAQ t2, t1, t1 \ | |||||
VN h0, t1, t2 \ | |||||
VNC t0, t1, t1 \ | |||||
VO t1, t2, h0 \ | |||||
// func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]key) | |||||
TEXT ·poly1305vmsl(SB), $0-32 | |||||
// This code processes 6 + up to 4 blocks (32 bytes) per iteration | |||||
// using the algorithm described in: | |||||
// NEON crypto, Daniel J. Bernstein & Peter Schwabe | |||||
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf | |||||
// And as moddified for VMSL as described in | |||||
// Accelerating Poly1305 Cryptographic Message Authentication on the z14 | |||||
// O'Farrell et al, CASCON 2017, p48-55 | |||||
// https://ibm.ent.box.com/s/jf9gedj0e9d2vjctfyh186shaztavnht | |||||
LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key | |||||
VZERO V0 // c | |||||
// load EX0, EX1 and EX2 | |||||
MOVD $·constants<>(SB), R5 | |||||
VLM (R5), EX0, EX2 // c | |||||
// setup r | |||||
VL (R4), T_0 | |||||
MOVD $·keyMask<>(SB), R6 | |||||
VL (R6), T_1 | |||||
VN T_0, T_1, T_0 | |||||
VZERO T_2 // limbs for r | |||||
VZERO T_3 | |||||
VZERO T_4 | |||||
EXPACC2(T_0, T_2, T_3, T_4, T_1, T_5, T_7) | |||||
// T_2, T_3, T_4: [0, r] | |||||
// setup r*20 | |||||
VLEIG $0, $0, T_0 | |||||
VLEIG $1, $20, T_0 // T_0: [0, 20] | |||||
VZERO T_5 | |||||
VZERO T_6 | |||||
VMSLG T_0, T_3, T_5, T_5 | |||||
VMSLG T_0, T_4, T_6, T_6 | |||||
// store r for final block in GR | |||||
VLGVG $1, T_2, RSAVE_0 // c | |||||
VLGVG $1, T_3, RSAVE_1 // c | |||||
VLGVG $1, T_4, RSAVE_2 // c | |||||
VLGVG $1, T_5, R5SAVE_1 // c | |||||
VLGVG $1, T_6, R5SAVE_2 // c | |||||
// initialize h | |||||
VZERO H0_0 | |||||
VZERO H1_0 | |||||
VZERO H2_0 | |||||
VZERO H0_1 | |||||
VZERO H1_1 | |||||
VZERO H2_1 | |||||
// initialize pointer for reduce constants | |||||
MOVD $·reduce<>(SB), R12 | |||||
// calculate r**2 and 20*(r**2) | |||||
VZERO R_0 | |||||
VZERO R_1 | |||||
VZERO R_2 | |||||
SQUARE(T_2, T_3, T_4, T_6, R_0, R_1, R_2, T_1, T_5, T_7) | |||||
REDUCE2(R_0, R_1, R_2, M0, M1, M2, M3, M4, R5_1, R5_2, M5, T_1) | |||||
VZERO R5_1 | |||||
VZERO R5_2 | |||||
VMSLG T_0, R_1, R5_1, R5_1 | |||||
VMSLG T_0, R_2, R5_2, R5_2 | |||||
// skip r**4 calculation if 3 blocks or less | |||||
CMPBLE R3, $48, b4 | |||||
// calculate r**4 and 20*(r**4) | |||||
VZERO T_8 | |||||
VZERO T_9 | |||||
VZERO T_10 | |||||
SQUARE(R_0, R_1, R_2, R5_2, T_8, T_9, T_10, T_1, T_5, T_7) | |||||
REDUCE2(T_8, T_9, T_10, M0, M1, M2, M3, M4, T_2, T_3, M5, T_1) | |||||
VZERO T_2 | |||||
VZERO T_3 | |||||
VMSLG T_0, T_9, T_2, T_2 | |||||
VMSLG T_0, T_10, T_3, T_3 | |||||
// put r**2 to the right and r**4 to the left of R_0, R_1, R_2 | |||||
VSLDB $8, T_8, T_8, T_8 | |||||
VSLDB $8, T_9, T_9, T_9 | |||||
VSLDB $8, T_10, T_10, T_10 | |||||
VSLDB $8, T_2, T_2, T_2 | |||||
VSLDB $8, T_3, T_3, T_3 | |||||
VO T_8, R_0, R_0 | |||||
VO T_9, R_1, R_1 | |||||
VO T_10, R_2, R_2 | |||||
VO T_2, R5_1, R5_1 | |||||
VO T_3, R5_2, R5_2 | |||||
CMPBLE R3, $80, load // less than or equal to 5 blocks in message | |||||
// 6(or 5+1) blocks | |||||
SUB $81, R3 | |||||
VLM (R2), M0, M4 | |||||
VLL R3, 80(R2), M5 | |||||
ADD $1, R3 | |||||
MOVBZ $1, R0 | |||||
CMPBGE R3, $16, 2(PC) | |||||
VLVGB R3, R0, M5 | |||||
MOVD $96(R2), R2 | |||||
EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) | |||||
EXPACC(M2, M3, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) | |||||
VLEIB $2, $1, H2_0 | |||||
VLEIB $2, $1, H2_1 | |||||
VLEIB $10, $1, H2_0 | |||||
VLEIB $10, $1, H2_1 | |||||
VZERO M0 | |||||
VZERO M1 | |||||
VZERO M2 | |||||
VZERO M3 | |||||
VZERO T_4 | |||||
VZERO T_10 | |||||
EXPACC(M4, M5, M0, M1, M2, M3, T_4, T_10, T_0, T_1, T_2, T_3) | |||||
VLR T_4, M4 | |||||
VLEIB $10, $1, M2 | |||||
CMPBLT R3, $16, 2(PC) | |||||
VLEIB $10, $1, T_10 | |||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) | |||||
VMRHG V0, H0_1, H0_0 | |||||
VMRHG V0, H1_1, H1_0 | |||||
VMRHG V0, H2_1, H2_0 | |||||
VMRLG V0, H0_1, H0_1 | |||||
VMRLG V0, H1_1, H1_1 | |||||
VMRLG V0, H2_1, H2_1 | |||||
SUB $16, R3 | |||||
CMPBLE R3, $0, square | |||||
load: | |||||
// load EX0, EX1 and EX2 | |||||
MOVD $·c<>(SB), R5 | |||||
VLM (R5), EX0, EX2 | |||||
loop: | |||||
CMPBLE R3, $64, add // b4 // last 4 or less blocks left | |||||
// next 4 full blocks | |||||
VLM (R2), M2, M5 | |||||
SUB $64, R3 | |||||
MOVD $64(R2), R2 | |||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, T_0, T_1, T_3, T_4, T_5, T_2, T_7, T_8, T_9) | |||||
// expacc in-lined to create [m2, m3] limbs | |||||
VGBM $0x3f3f, T_0 // 44 bit clear mask | |||||
VGBM $0x1f1f, T_1 // 40 bit clear mask | |||||
VPERM M2, M3, EX0, T_3 | |||||
VESRLG $4, T_0, T_0 // 44 bit clear mask ready | |||||
VPERM M2, M3, EX1, T_4 | |||||
VPERM M2, M3, EX2, T_5 | |||||
VN T_0, T_3, T_3 | |||||
VESRLG $4, T_4, T_4 | |||||
VN T_1, T_5, T_5 | |||||
VN T_0, T_4, T_4 | |||||
VMRHG H0_1, T_3, H0_0 | |||||
VMRHG H1_1, T_4, H1_0 | |||||
VMRHG H2_1, T_5, H2_0 | |||||
VMRLG H0_1, T_3, H0_1 | |||||
VMRLG H1_1, T_4, H1_1 | |||||
VMRLG H2_1, T_5, H2_1 | |||||
VLEIB $10, $1, H2_0 | |||||
VLEIB $10, $1, H2_1 | |||||
VPERM M4, M5, EX0, T_3 | |||||
VPERM M4, M5, EX1, T_4 | |||||
VPERM M4, M5, EX2, T_5 | |||||
VN T_0, T_3, T_3 | |||||
VESRLG $4, T_4, T_4 | |||||
VN T_1, T_5, T_5 | |||||
VN T_0, T_4, T_4 | |||||
VMRHG V0, T_3, M0 | |||||
VMRHG V0, T_4, M1 | |||||
VMRHG V0, T_5, M2 | |||||
VMRLG V0, T_3, M3 | |||||
VMRLG V0, T_4, M4 | |||||
VMRLG V0, T_5, M5 | |||||
VLEIB $10, $1, M2 | |||||
VLEIB $10, $1, M5 | |||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||||
CMPBNE R3, $0, loop | |||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) | |||||
VMRHG V0, H0_1, H0_0 | |||||
VMRHG V0, H1_1, H1_0 | |||||
VMRHG V0, H2_1, H2_0 | |||||
VMRLG V0, H0_1, H0_1 | |||||
VMRLG V0, H1_1, H1_1 | |||||
VMRLG V0, H2_1, H2_1 | |||||
// load EX0, EX1, EX2 | |||||
MOVD $·constants<>(SB), R5 | |||||
VLM (R5), EX0, EX2 | |||||
// sum vectors | |||||
VAQ H0_0, H0_1, H0_0 | |||||
VAQ H1_0, H1_1, H1_0 | |||||
VAQ H2_0, H2_1, H2_0 | |||||
// h may be >= 2*(2**130-5) so we need to reduce it again | |||||
// M0...M4 are used as temps here | |||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) | |||||
next: // carry h1->h2 | |||||
VLEIB $7, $0x28, T_1 | |||||
VREPIB $4, T_2 | |||||
VGBM $0x003F, T_3 | |||||
VESRLG $4, T_3 | |||||
// byte shift | |||||
VSRLB T_1, H1_0, T_4 | |||||
// bit shift | |||||
VSRL T_2, T_4, T_4 | |||||
// clear h1 carry bits | |||||
VN T_3, H1_0, H1_0 | |||||
// add carry | |||||
VAQ T_4, H2_0, H2_0 | |||||
// h is now < 2*(2**130-5) | |||||
// pack h into h1 (hi) and h0 (lo) | |||||
PACK(H0_0, H1_0, H2_0) | |||||
// if h > 2**130-5 then h -= 2**130-5 | |||||
MOD(H0_0, H1_0, T_0, T_1, T_2) | |||||
// h += s | |||||
MOVD $·bswapMask<>(SB), R5 | |||||
VL (R5), T_1 | |||||
VL 16(R4), T_0 | |||||
VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big) | |||||
VAQ T_0, H0_0, H0_0 | |||||
VPERM H0_0, H0_0, T_1, H0_0 // reverse bytes (to little) | |||||
VST H0_0, (R1) | |||||
RET | |||||
add: | |||||
// load EX0, EX1, EX2 | |||||
MOVD $·constants<>(SB), R5 | |||||
VLM (R5), EX0, EX2 | |||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) | |||||
VMRHG V0, H0_1, H0_0 | |||||
VMRHG V0, H1_1, H1_0 | |||||
VMRHG V0, H2_1, H2_0 | |||||
VMRLG V0, H0_1, H0_1 | |||||
VMRLG V0, H1_1, H1_1 | |||||
VMRLG V0, H2_1, H2_1 | |||||
CMPBLE R3, $64, b4 | |||||
b4: | |||||
CMPBLE R3, $48, b3 // 3 blocks or less | |||||
// 4(3+1) blocks remaining | |||||
SUB $49, R3 | |||||
VLM (R2), M0, M2 | |||||
VLL R3, 48(R2), M3 | |||||
ADD $1, R3 | |||||
MOVBZ $1, R0 | |||||
CMPBEQ R3, $16, 2(PC) | |||||
VLVGB R3, R0, M3 | |||||
MOVD $64(R2), R2 | |||||
EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) | |||||
VLEIB $10, $1, H2_0 | |||||
VLEIB $10, $1, H2_1 | |||||
VZERO M0 | |||||
VZERO M1 | |||||
VZERO M4 | |||||
VZERO M5 | |||||
VZERO T_4 | |||||
VZERO T_10 | |||||
EXPACC(M2, M3, M0, M1, M4, M5, T_4, T_10, T_0, T_1, T_2, T_3) | |||||
VLR T_4, M2 | |||||
VLEIB $10, $1, M4 | |||||
CMPBNE R3, $16, 2(PC) | |||||
VLEIB $10, $1, T_10 | |||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M4, M5, M2, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) | |||||
VMRHG V0, H0_1, H0_0 | |||||
VMRHG V0, H1_1, H1_0 | |||||
VMRHG V0, H2_1, H2_0 | |||||
VMRLG V0, H0_1, H0_1 | |||||
VMRLG V0, H1_1, H1_1 | |||||
VMRLG V0, H2_1, H2_1 | |||||
SUB $16, R3 | |||||
CMPBLE R3, $0, square // this condition must always hold true! | |||||
b3: | |||||
CMPBLE R3, $32, b2 | |||||
// 3 blocks remaining | |||||
// setup [r²,r] | |||||
VSLDB $8, R_0, R_0, R_0 | |||||
VSLDB $8, R_1, R_1, R_1 | |||||
VSLDB $8, R_2, R_2, R_2 | |||||
VSLDB $8, R5_1, R5_1, R5_1 | |||||
VSLDB $8, R5_2, R5_2, R5_2 | |||||
VLVGG $1, RSAVE_0, R_0 | |||||
VLVGG $1, RSAVE_1, R_1 | |||||
VLVGG $1, RSAVE_2, R_2 | |||||
VLVGG $1, R5SAVE_1, R5_1 | |||||
VLVGG $1, R5SAVE_2, R5_2 | |||||
// setup [h0, h1] | |||||
VSLDB $8, H0_0, H0_0, H0_0 | |||||
VSLDB $8, H1_0, H1_0, H1_0 | |||||
VSLDB $8, H2_0, H2_0, H2_0 | |||||
VO H0_1, H0_0, H0_0 | |||||
VO H1_1, H1_0, H1_0 | |||||
VO H2_1, H2_0, H2_0 | |||||
VZERO H0_1 | |||||
VZERO H1_1 | |||||
VZERO H2_1 | |||||
VZERO M0 | |||||
VZERO M1 | |||||
VZERO M2 | |||||
VZERO M3 | |||||
VZERO M4 | |||||
VZERO M5 | |||||
// H*[r**2, r] | |||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, T_10, M5) | |||||
SUB $33, R3 | |||||
VLM (R2), M0, M1 | |||||
VLL R3, 32(R2), M2 | |||||
ADD $1, R3 | |||||
MOVBZ $1, R0 | |||||
CMPBEQ R3, $16, 2(PC) | |||||
VLVGB R3, R0, M2 | |||||
// H += m0 | |||||
VZERO T_1 | |||||
VZERO T_2 | |||||
VZERO T_3 | |||||
EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6) | |||||
VLEIB $10, $1, T_3 | |||||
VAG H0_0, T_1, H0_0 | |||||
VAG H1_0, T_2, H1_0 | |||||
VAG H2_0, T_3, H2_0 | |||||
VZERO M0 | |||||
VZERO M3 | |||||
VZERO M4 | |||||
VZERO M5 | |||||
VZERO T_10 | |||||
// (H+m0)*r | |||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M3, M4, M5, V0, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||||
REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_10, H0_1, H1_1, H2_1, T_9) | |||||
// H += m1 | |||||
VZERO V0 | |||||
VZERO T_1 | |||||
VZERO T_2 | |||||
VZERO T_3 | |||||
EXPACC2(M1, T_1, T_2, T_3, T_4, T_5, T_6) | |||||
VLEIB $10, $1, T_3 | |||||
VAQ H0_0, T_1, H0_0 | |||||
VAQ H1_0, T_2, H1_0 | |||||
VAQ H2_0, T_3, H2_0 | |||||
REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) | |||||
// [H, m2] * [r**2, r] | |||||
EXPACC2(M2, H0_0, H1_0, H2_0, T_1, T_2, T_3) | |||||
CMPBNE R3, $16, 2(PC) | |||||
VLEIB $10, $1, H2_0 | |||||
VZERO M0 | |||||
VZERO M1 | |||||
VZERO M2 | |||||
VZERO M3 | |||||
VZERO M4 | |||||
VZERO M5 | |||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, M5, T_10) | |||||
SUB $16, R3 | |||||
CMPBLE R3, $0, next // this condition must always hold true! | |||||
b2: | |||||
CMPBLE R3, $16, b1 | |||||
// 2 blocks remaining | |||||
// setup [r²,r] | |||||
VSLDB $8, R_0, R_0, R_0 | |||||
VSLDB $8, R_1, R_1, R_1 | |||||
VSLDB $8, R_2, R_2, R_2 | |||||
VSLDB $8, R5_1, R5_1, R5_1 | |||||
VSLDB $8, R5_2, R5_2, R5_2 | |||||
VLVGG $1, RSAVE_0, R_0 | |||||
VLVGG $1, RSAVE_1, R_1 | |||||
VLVGG $1, RSAVE_2, R_2 | |||||
VLVGG $1, R5SAVE_1, R5_1 | |||||
VLVGG $1, R5SAVE_2, R5_2 | |||||
// setup [h0, h1] | |||||
VSLDB $8, H0_0, H0_0, H0_0 | |||||
VSLDB $8, H1_0, H1_0, H1_0 | |||||
VSLDB $8, H2_0, H2_0, H2_0 | |||||
VO H0_1, H0_0, H0_0 | |||||
VO H1_1, H1_0, H1_0 | |||||
VO H2_1, H2_0, H2_0 | |||||
VZERO H0_1 | |||||
VZERO H1_1 | |||||
VZERO H2_1 | |||||
VZERO M0 | |||||
VZERO M1 | |||||
VZERO M2 | |||||
VZERO M3 | |||||
VZERO M4 | |||||
VZERO M5 | |||||
// H*[r**2, r] | |||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) | |||||
VMRHG V0, H0_1, H0_0 | |||||
VMRHG V0, H1_1, H1_0 | |||||
VMRHG V0, H2_1, H2_0 | |||||
VMRLG V0, H0_1, H0_1 | |||||
VMRLG V0, H1_1, H1_1 | |||||
VMRLG V0, H2_1, H2_1 | |||||
// move h to the left and 0s at the right | |||||
VSLDB $8, H0_0, H0_0, H0_0 | |||||
VSLDB $8, H1_0, H1_0, H1_0 | |||||
VSLDB $8, H2_0, H2_0, H2_0 | |||||
// get message blocks and append 1 to start | |||||
SUB $17, R3 | |||||
VL (R2), M0 | |||||
VLL R3, 16(R2), M1 | |||||
ADD $1, R3 | |||||
MOVBZ $1, R0 | |||||
CMPBEQ R3, $16, 2(PC) | |||||
VLVGB R3, R0, M1 | |||||
VZERO T_6 | |||||
VZERO T_7 | |||||
VZERO T_8 | |||||
EXPACC2(M0, T_6, T_7, T_8, T_1, T_2, T_3) | |||||
EXPACC2(M1, T_6, T_7, T_8, T_1, T_2, T_3) | |||||
VLEIB $2, $1, T_8 | |||||
CMPBNE R3, $16, 2(PC) | |||||
VLEIB $10, $1, T_8 | |||||
// add [m0, m1] to h | |||||
VAG H0_0, T_6, H0_0 | |||||
VAG H1_0, T_7, H1_0 | |||||
VAG H2_0, T_8, H2_0 | |||||
VZERO M2 | |||||
VZERO M3 | |||||
VZERO M4 | |||||
VZERO M5 | |||||
VZERO T_10 | |||||
VZERO M0 | |||||
// at this point R_0 .. R5_2 look like [r**2, r] | |||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M2, M3, M4, M5, T_10, M0, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||||
REDUCE2(H0_0, H1_0, H2_0, M2, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) | |||||
SUB $16, R3, R3 | |||||
CMPBLE R3, $0, next | |||||
b1: | |||||
CMPBLE R3, $0, next | |||||
// 1 block remaining | |||||
// setup [r²,r] | |||||
VSLDB $8, R_0, R_0, R_0 | |||||
VSLDB $8, R_1, R_1, R_1 | |||||
VSLDB $8, R_2, R_2, R_2 | |||||
VSLDB $8, R5_1, R5_1, R5_1 | |||||
VSLDB $8, R5_2, R5_2, R5_2 | |||||
VLVGG $1, RSAVE_0, R_0 | |||||
VLVGG $1, RSAVE_1, R_1 | |||||
VLVGG $1, RSAVE_2, R_2 | |||||
VLVGG $1, R5SAVE_1, R5_1 | |||||
VLVGG $1, R5SAVE_2, R5_2 | |||||
// setup [h0, h1] | |||||
VSLDB $8, H0_0, H0_0, H0_0 | |||||
VSLDB $8, H1_0, H1_0, H1_0 | |||||
VSLDB $8, H2_0, H2_0, H2_0 | |||||
VO H0_1, H0_0, H0_0 | |||||
VO H1_1, H1_0, H1_0 | |||||
VO H2_1, H2_0, H2_0 | |||||
VZERO H0_1 | |||||
VZERO H1_1 | |||||
VZERO H2_1 | |||||
VZERO M0 | |||||
VZERO M1 | |||||
VZERO M2 | |||||
VZERO M3 | |||||
VZERO M4 | |||||
VZERO M5 | |||||
// H*[r**2, r] | |||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) | |||||
// set up [0, m0] limbs | |||||
SUB $1, R3 | |||||
VLL R3, (R2), M0 | |||||
ADD $1, R3 | |||||
MOVBZ $1, R0 | |||||
CMPBEQ R3, $16, 2(PC) | |||||
VLVGB R3, R0, M0 | |||||
VZERO T_1 | |||||
VZERO T_2 | |||||
VZERO T_3 | |||||
EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)// limbs: [0, m] | |||||
CMPBNE R3, $16, 2(PC) | |||||
VLEIB $10, $1, T_3 | |||||
// h+m0 | |||||
VAQ H0_0, T_1, H0_0 | |||||
VAQ H1_0, T_2, H1_0 | |||||
VAQ H2_0, T_3, H2_0 | |||||
VZERO M0 | |||||
VZERO M1 | |||||
VZERO M2 | |||||
VZERO M3 | |||||
VZERO M4 | |||||
VZERO M5 | |||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) | |||||
BR next | |||||
square: | |||||
// setup [r²,r] | |||||
VSLDB $8, R_0, R_0, R_0 | |||||
VSLDB $8, R_1, R_1, R_1 | |||||
VSLDB $8, R_2, R_2, R_2 | |||||
VSLDB $8, R5_1, R5_1, R5_1 | |||||
VSLDB $8, R5_2, R5_2, R5_2 | |||||
VLVGG $1, RSAVE_0, R_0 | |||||
VLVGG $1, RSAVE_1, R_1 | |||||
VLVGG $1, RSAVE_2, R_2 | |||||
VLVGG $1, R5SAVE_1, R5_1 | |||||
VLVGG $1, R5SAVE_2, R5_2 | |||||
// setup [h0, h1] | |||||
VSLDB $8, H0_0, H0_0, H0_0 | |||||
VSLDB $8, H1_0, H1_0, H1_0 | |||||
VSLDB $8, H2_0, H2_0, H2_0 | |||||
VO H0_1, H0_0, H0_0 | |||||
VO H1_1, H1_0, H1_0 | |||||
VO H2_1, H2_0, H2_0 | |||||
VZERO H0_1 | |||||
VZERO H1_1 | |||||
VZERO H2_1 | |||||
VZERO M0 | |||||
VZERO M1 | |||||
VZERO M2 | |||||
VZERO M3 | |||||
VZERO M4 | |||||
VZERO M5 | |||||
// (h0*r**2) + (h1*r) | |||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) | |||||
BR next |
@@ -102,8 +102,9 @@ type ConstraintExtension struct { | |||||
// AddedKey describes an SSH key to be added to an Agent. | // AddedKey describes an SSH key to be added to an Agent. | ||||
type AddedKey struct { | type AddedKey struct { | ||||
// PrivateKey must be a *rsa.PrivateKey, *dsa.PrivateKey or | |||||
// *ecdsa.PrivateKey, which will be inserted into the agent. | |||||
// PrivateKey must be a *rsa.PrivateKey, *dsa.PrivateKey, | |||||
// ed25519.PrivateKey or *ecdsa.PrivateKey, which will be inserted into the | |||||
// agent. | |||||
PrivateKey interface{} | PrivateKey interface{} | ||||
// Certificate, if not nil, is communicated to the agent and will be | // Certificate, if not nil, is communicated to the agent and will be | ||||
// stored with the key. | // stored with the key. | ||||
@@ -566,6 +567,17 @@ func (c *client) insertKey(s interface{}, comment string, constraints []byte) er | |||||
Comments: comment, | Comments: comment, | ||||
Constraints: constraints, | Constraints: constraints, | ||||
}) | }) | ||||
case ed25519.PrivateKey: | |||||
req = ssh.Marshal(ed25519KeyMsg{ | |||||
Type: ssh.KeyAlgoED25519, | |||||
Pub: []byte(k)[32:], | |||||
Priv: []byte(k), | |||||
Comments: comment, | |||||
Constraints: constraints, | |||||
}) | |||||
// This function originally supported only *ed25519.PrivateKey, however the | |||||
// general idiom is to pass ed25519.PrivateKey by value, not by pointer. | |||||
// We still support the pointer variant for backwards compatibility. | |||||
case *ed25519.PrivateKey: | case *ed25519.PrivateKey: | ||||
req = ssh.Marshal(ed25519KeyMsg{ | req = ssh.Marshal(ed25519KeyMsg{ | ||||
Type: ssh.KeyAlgoED25519, | Type: ssh.KeyAlgoED25519, | ||||
@@ -683,6 +695,18 @@ func (c *client) insertCert(s interface{}, cert *ssh.Certificate, comment string | |||||
Comments: comment, | Comments: comment, | ||||
Constraints: constraints, | Constraints: constraints, | ||||
}) | }) | ||||
case ed25519.PrivateKey: | |||||
req = ssh.Marshal(ed25519CertMsg{ | |||||
Type: cert.Type(), | |||||
CertBytes: cert.Marshal(), | |||||
Pub: []byte(k)[32:], | |||||
Priv: []byte(k), | |||||
Comments: comment, | |||||
Constraints: constraints, | |||||
}) | |||||
// This function originally supported only *ed25519.PrivateKey, however the | |||||
// general idiom is to pass ed25519.PrivateKey by value, not by pointer. | |||||
// We still support the pointer variant for backwards compatibility. | |||||
case *ed25519.PrivateKey: | case *ed25519.PrivateKey: | ||||
req = ssh.Marshal(ed25519CertMsg{ | req = ssh.Marshal(ed25519CertMsg{ | ||||
Type: cert.Type(), | Type: cert.Type(), | ||||
@@ -414,8 +414,8 @@ func (c *CertChecker) CheckCert(principal string, cert *Certificate) error { | |||||
return nil | return nil | ||||
} | } | ||||
// SignCert sets c.SignatureKey to the authority's public key and stores a | |||||
// Signature, by authority, in the certificate. | |||||
// SignCert signs the certificate with an authority, setting the Nonce, | |||||
// SignatureKey, and Signature fields. | |||||
func (c *Certificate) SignCert(rand io.Reader, authority Signer) error { | func (c *Certificate) SignCert(rand io.Reader, authority Signer) error { | ||||
c.Nonce = make([]byte, 32) | c.Nonce = make([]byte, 32) | ||||
if _, err := io.ReadFull(rand, c.Nonce); err != nil { | if _, err := io.ReadFull(rand, c.Nonce); err != nil { | ||||
@@ -119,7 +119,7 @@ var cipherModes = map[string]*cipherMode{ | |||||
chacha20Poly1305ID: {64, 0, newChaCha20Cipher}, | chacha20Poly1305ID: {64, 0, newChaCha20Cipher}, | ||||
// CBC mode is insecure and so is not included in the default config. | // CBC mode is insecure and so is not included in the default config. | ||||
// (See http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf). If absolutely | |||||
// (See https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf). If absolutely | |||||
// needed, it's possible to specify a custom Config to enable it. | // needed, it's possible to specify a custom Config to enable it. | ||||
// You should expect that an active attacker can recover plaintext if | // You should expect that an active attacker can recover plaintext if | ||||
// you do. | // you do. | ||||
@@ -572,7 +572,7 @@ func (gex *dhGEXSHA) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, e | |||||
return new(big.Int).Exp(theirPublic, myPrivate, gex.p), nil | return new(big.Int).Exp(theirPublic, myPrivate, gex.p), nil | ||||
} | } | ||||
func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) { | |||||
func (gex dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) { | |||||
// Send GexRequest | // Send GexRequest | ||||
kexDHGexRequest := kexDHGexRequestMsg{ | kexDHGexRequest := kexDHGexRequestMsg{ | ||||
MinBits: dhGroupExchangeMinimumBits, | MinBits: dhGroupExchangeMinimumBits, | ||||
@@ -677,7 +677,7 @@ func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshak | |||||
// Server half implementation of the Diffie Hellman Key Exchange with SHA1 and SHA256. | // Server half implementation of the Diffie Hellman Key Exchange with SHA1 and SHA256. | ||||
// | // | ||||
// This is a minimal implementation to satisfy the automated tests. | // This is a minimal implementation to satisfy the automated tests. | ||||
func (gex *dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) { | |||||
func (gex dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) { | |||||
// Receive GexRequest | // Receive GexRequest | ||||
packet, err := c.readPacket() | packet, err := c.readPacket() | ||||
if err != nil { | if err != nil { | ||||
@@ -1246,15 +1246,23 @@ func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc { | |||||
} | } | ||||
key, iv := k[:32], k[32:] | key, iv := k[:32], k[32:] | ||||
if cipherName != "aes256-ctr" { | |||||
return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q", cipherName, "aes256-ctr") | |||||
} | |||||
c, err := aes.NewCipher(key) | c, err := aes.NewCipher(key) | ||||
if err != nil { | if err != nil { | ||||
return nil, err | return nil, err | ||||
} | } | ||||
ctr := cipher.NewCTR(c, iv) | |||||
ctr.XORKeyStream(privKeyBlock, privKeyBlock) | |||||
switch cipherName { | |||||
case "aes256-ctr": | |||||
ctr := cipher.NewCTR(c, iv) | |||||
ctr.XORKeyStream(privKeyBlock, privKeyBlock) | |||||
case "aes256-cbc": | |||||
if len(privKeyBlock)%c.BlockSize() != 0 { | |||||
return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size") | |||||
} | |||||
cbc := cipher.NewCBCDecrypter(c, iv) | |||||
cbc.CryptBlocks(privKeyBlock, privKeyBlock) | |||||
default: | |||||
return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc") | |||||
} | |||||
return privKeyBlock, nil | return privKeyBlock, nil | ||||
} | } | ||||
@@ -158,7 +158,7 @@ github.com/couchbaselabs/go-couchbase | |||||
## explicit | ## explicit | ||||
# github.com/davecgh/go-spew v1.1.1 | # github.com/davecgh/go-spew v1.1.1 | ||||
github.com/davecgh/go-spew/spew | github.com/davecgh/go-spew/spew | ||||
# github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 | |||||
# github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc | |||||
## explicit | ## explicit | ||||
github.com/denisenkom/go-mssqldb | github.com/denisenkom/go-mssqldb | ||||
github.com/denisenkom/go-mssqldb/internal/cp | github.com/denisenkom/go-mssqldb/internal/cp | ||||
@@ -670,7 +670,7 @@ go.mongodb.org/mongo-driver/bson/bsonrw | |||||
go.mongodb.org/mongo-driver/bson/bsontype | go.mongodb.org/mongo-driver/bson/bsontype | ||||
go.mongodb.org/mongo-driver/bson/primitive | go.mongodb.org/mongo-driver/bson/primitive | ||||
go.mongodb.org/mongo-driver/x/bsonx/bsoncore | go.mongodb.org/mongo-driver/x/bsonx/bsoncore | ||||
# golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 | |||||
# golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 | |||||
## explicit | ## explicit | ||||
golang.org/x/crypto/acme | golang.org/x/crypto/acme | ||||
golang.org/x/crypto/acme/autocert | golang.org/x/crypto/acme/autocert | ||||