@@ -0,0 +1,15 @@ | |||||
ISC License | |||||
Copyright (c) 2012-2013 Dave Collins <dave@davec.name> | |||||
Permission to use, copy, modify, and distribute this software for any | |||||
purpose with or without fee is hereby granted, provided that the above | |||||
copyright notice and this permission notice appear in all copies. | |||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||||
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||||
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||||
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||||
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||||
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||||
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
@@ -0,0 +1,152 @@ | |||||
// Copyright (c) 2015 Dave Collins <dave@davec.name> | |||||
// | |||||
// Permission to use, copy, modify, and distribute this software for any | |||||
// purpose with or without fee is hereby granted, provided that the above | |||||
// copyright notice and this permission notice appear in all copies. | |||||
// | |||||
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||||
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||||
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||||
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||||
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||||
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||||
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||||
// NOTE: Due to the following build constraints, this file will only be compiled | |||||
// when the code is not running on Google App Engine, compiled by GopherJS, and | |||||
// "-tags safe" is not added to the go build command line. The "disableunsafe" | |||||
// tag is deprecated and thus should not be used. | |||||
// +build !js,!appengine,!safe,!disableunsafe | |||||
package spew | |||||
import ( | |||||
"reflect" | |||||
"unsafe" | |||||
) | |||||
const ( | |||||
// UnsafeDisabled is a build-time constant which specifies whether or | |||||
// not access to the unsafe package is available. | |||||
UnsafeDisabled = false | |||||
// ptrSize is the size of a pointer on the current arch. | |||||
ptrSize = unsafe.Sizeof((*byte)(nil)) | |||||
) | |||||
var ( | |||||
// offsetPtr, offsetScalar, and offsetFlag are the offsets for the | |||||
// internal reflect.Value fields. These values are valid before golang | |||||
// commit ecccf07e7f9d which changed the format. The are also valid | |||||
// after commit 82f48826c6c7 which changed the format again to mirror | |||||
// the original format. Code in the init function updates these offsets | |||||
// as necessary. | |||||
offsetPtr = uintptr(ptrSize) | |||||
offsetScalar = uintptr(0) | |||||
offsetFlag = uintptr(ptrSize * 2) | |||||
// flagKindWidth and flagKindShift indicate various bits that the | |||||
// reflect package uses internally to track kind information. | |||||
// | |||||
// flagRO indicates whether or not the value field of a reflect.Value is | |||||
// read-only. | |||||
// | |||||
// flagIndir indicates whether the value field of a reflect.Value is | |||||
// the actual data or a pointer to the data. | |||||
// | |||||
// These values are valid before golang commit 90a7c3c86944 which | |||||
// changed their positions. Code in the init function updates these | |||||
// flags as necessary. | |||||
flagKindWidth = uintptr(5) | |||||
flagKindShift = uintptr(flagKindWidth - 1) | |||||
flagRO = uintptr(1 << 0) | |||||
flagIndir = uintptr(1 << 1) | |||||
) | |||||
func init() { | |||||
// Older versions of reflect.Value stored small integers directly in the | |||||
// ptr field (which is named val in the older versions). Versions | |||||
// between commits ecccf07e7f9d and 82f48826c6c7 added a new field named | |||||
// scalar for this purpose which unfortunately came before the flag | |||||
// field, so the offset of the flag field is different for those | |||||
// versions. | |||||
// | |||||
// This code constructs a new reflect.Value from a known small integer | |||||
// and checks if the size of the reflect.Value struct indicates it has | |||||
// the scalar field. When it does, the offsets are updated accordingly. | |||||
vv := reflect.ValueOf(0xf00) | |||||
if unsafe.Sizeof(vv) == (ptrSize * 4) { | |||||
offsetScalar = ptrSize * 2 | |||||
offsetFlag = ptrSize * 3 | |||||
} | |||||
// Commit 90a7c3c86944 changed the flag positions such that the low | |||||
// order bits are the kind. This code extracts the kind from the flags | |||||
// field and ensures it's the correct type. When it's not, the flag | |||||
// order has been changed to the newer format, so the flags are updated | |||||
// accordingly. | |||||
upf := unsafe.Pointer(uintptr(unsafe.Pointer(&vv)) + offsetFlag) | |||||
upfv := *(*uintptr)(upf) | |||||
flagKindMask := uintptr((1<<flagKindWidth - 1) << flagKindShift) | |||||
if (upfv&flagKindMask)>>flagKindShift != uintptr(reflect.Int) { | |||||
flagKindShift = 0 | |||||
flagRO = 1 << 5 | |||||
flagIndir = 1 << 6 | |||||
// Commit adf9b30e5594 modified the flags to separate the | |||||
// flagRO flag into two bits which specifies whether or not the | |||||
// field is embedded. This causes flagIndir to move over a bit | |||||
// and means that flagRO is the combination of either of the | |||||
// original flagRO bit and the new bit. | |||||
// | |||||
// This code detects the change by extracting what used to be | |||||
// the indirect bit to ensure it's set. When it's not, the flag | |||||
// order has been changed to the newer format, so the flags are | |||||
// updated accordingly. | |||||
if upfv&flagIndir == 0 { | |||||
flagRO = 3 << 5 | |||||
flagIndir = 1 << 7 | |||||
} | |||||
} | |||||
} | |||||
// unsafeReflectValue converts the passed reflect.Value into a one that bypasses | |||||
// the typical safety restrictions preventing access to unaddressable and | |||||
// unexported data. It works by digging the raw pointer to the underlying | |||||
// value out of the protected value and generating a new unprotected (unsafe) | |||||
// reflect.Value to it. | |||||
// | |||||
// This allows us to check for implementations of the Stringer and error | |||||
// interfaces to be used for pretty printing ordinarily unaddressable and | |||||
// inaccessible values such as unexported struct fields. | |||||
func unsafeReflectValue(v reflect.Value) (rv reflect.Value) { | |||||
indirects := 1 | |||||
vt := v.Type() | |||||
upv := unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetPtr) | |||||
rvf := *(*uintptr)(unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetFlag)) | |||||
if rvf&flagIndir != 0 { | |||||
vt = reflect.PtrTo(v.Type()) | |||||
indirects++ | |||||
} else if offsetScalar != 0 { | |||||
// The value is in the scalar field when it's not one of the | |||||
// reference types. | |||||
switch vt.Kind() { | |||||
case reflect.Uintptr: | |||||
case reflect.Chan: | |||||
case reflect.Func: | |||||
case reflect.Map: | |||||
case reflect.Ptr: | |||||
case reflect.UnsafePointer: | |||||
default: | |||||
upv = unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + | |||||
offsetScalar) | |||||
} | |||||
} | |||||
pv := reflect.NewAt(vt, upv) | |||||
rv = pv | |||||
for i := 0; i < indirects; i++ { | |||||
rv = rv.Elem() | |||||
} | |||||
return rv | |||||
} |
@@ -0,0 +1,38 @@ | |||||
// Copyright (c) 2015 Dave Collins <dave@davec.name> | |||||
// | |||||
// Permission to use, copy, modify, and distribute this software for any | |||||
// purpose with or without fee is hereby granted, provided that the above | |||||
// copyright notice and this permission notice appear in all copies. | |||||
// | |||||
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||||
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||||
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||||
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||||
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||||
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||||
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||||
// NOTE: Due to the following build constraints, this file will only be compiled | |||||
// when the code is running on Google App Engine, compiled by GopherJS, or | |||||
// "-tags safe" is added to the go build command line. The "disableunsafe" | |||||
// tag is deprecated and thus should not be used. | |||||
// +build js appengine safe disableunsafe | |||||
package spew | |||||
import "reflect" | |||||
const ( | |||||
// UnsafeDisabled is a build-time constant which specifies whether or | |||||
// not access to the unsafe package is available. | |||||
UnsafeDisabled = true | |||||
) | |||||
// unsafeReflectValue typically converts the passed reflect.Value into a one | |||||
// that bypasses the typical safety restrictions preventing access to | |||||
// unaddressable and unexported data. However, doing this relies on access to | |||||
// the unsafe package. This is a stub version which simply returns the passed | |||||
// reflect.Value when the unsafe package is not available. | |||||
func unsafeReflectValue(v reflect.Value) reflect.Value { | |||||
return v | |||||
} |
@@ -0,0 +1,341 @@ | |||||
/* | |||||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||||
* | |||||
* Permission to use, copy, modify, and distribute this software for any | |||||
* purpose with or without fee is hereby granted, provided that the above | |||||
* copyright notice and this permission notice appear in all copies. | |||||
* | |||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||||
*/ | |||||
package spew | |||||
import ( | |||||
"bytes" | |||||
"fmt" | |||||
"io" | |||||
"reflect" | |||||
"sort" | |||||
"strconv" | |||||
) | |||||
// Some constants in the form of bytes to avoid string overhead. This mirrors | |||||
// the technique used in the fmt package. | |||||
var ( | |||||
panicBytes = []byte("(PANIC=") | |||||
plusBytes = []byte("+") | |||||
iBytes = []byte("i") | |||||
trueBytes = []byte("true") | |||||
falseBytes = []byte("false") | |||||
interfaceBytes = []byte("(interface {})") | |||||
commaNewlineBytes = []byte(",\n") | |||||
newlineBytes = []byte("\n") | |||||
openBraceBytes = []byte("{") | |||||
openBraceNewlineBytes = []byte("{\n") | |||||
closeBraceBytes = []byte("}") | |||||
asteriskBytes = []byte("*") | |||||
colonBytes = []byte(":") | |||||
colonSpaceBytes = []byte(": ") | |||||
openParenBytes = []byte("(") | |||||
closeParenBytes = []byte(")") | |||||
spaceBytes = []byte(" ") | |||||
pointerChainBytes = []byte("->") | |||||
nilAngleBytes = []byte("<nil>") | |||||
maxNewlineBytes = []byte("<max depth reached>\n") | |||||
maxShortBytes = []byte("<max>") | |||||
circularBytes = []byte("<already shown>") | |||||
circularShortBytes = []byte("<shown>") | |||||
invalidAngleBytes = []byte("<invalid>") | |||||
openBracketBytes = []byte("[") | |||||
closeBracketBytes = []byte("]") | |||||
percentBytes = []byte("%") | |||||
precisionBytes = []byte(".") | |||||
openAngleBytes = []byte("<") | |||||
closeAngleBytes = []byte(">") | |||||
openMapBytes = []byte("map[") | |||||
closeMapBytes = []byte("]") | |||||
lenEqualsBytes = []byte("len=") | |||||
capEqualsBytes = []byte("cap=") | |||||
) | |||||
// hexDigits is used to map a decimal value to a hex digit. | |||||
var hexDigits = "0123456789abcdef" | |||||
// catchPanic handles any panics that might occur during the handleMethods | |||||
// calls. | |||||
func catchPanic(w io.Writer, v reflect.Value) { | |||||
if err := recover(); err != nil { | |||||
w.Write(panicBytes) | |||||
fmt.Fprintf(w, "%v", err) | |||||
w.Write(closeParenBytes) | |||||
} | |||||
} | |||||
// handleMethods attempts to call the Error and String methods on the underlying | |||||
// type the passed reflect.Value represents and outputes the result to Writer w. | |||||
// | |||||
// It handles panics in any called methods by catching and displaying the error | |||||
// as the formatted value. | |||||
func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) { | |||||
// We need an interface to check if the type implements the error or | |||||
// Stringer interface. However, the reflect package won't give us an | |||||
// interface on certain things like unexported struct fields in order | |||||
// to enforce visibility rules. We use unsafe, when it's available, | |||||
// to bypass these restrictions since this package does not mutate the | |||||
// values. | |||||
if !v.CanInterface() { | |||||
if UnsafeDisabled { | |||||
return false | |||||
} | |||||
v = unsafeReflectValue(v) | |||||
} | |||||
// Choose whether or not to do error and Stringer interface lookups against | |||||
// the base type or a pointer to the base type depending on settings. | |||||
// Technically calling one of these methods with a pointer receiver can | |||||
// mutate the value, however, types which choose to satisify an error or | |||||
// Stringer interface with a pointer receiver should not be mutating their | |||||
// state inside these interface methods. | |||||
if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() { | |||||
v = unsafeReflectValue(v) | |||||
} | |||||
if v.CanAddr() { | |||||
v = v.Addr() | |||||
} | |||||
// Is it an error or Stringer? | |||||
switch iface := v.Interface().(type) { | |||||
case error: | |||||
defer catchPanic(w, v) | |||||
if cs.ContinueOnMethod { | |||||
w.Write(openParenBytes) | |||||
w.Write([]byte(iface.Error())) | |||||
w.Write(closeParenBytes) | |||||
w.Write(spaceBytes) | |||||
return false | |||||
} | |||||
w.Write([]byte(iface.Error())) | |||||
return true | |||||
case fmt.Stringer: | |||||
defer catchPanic(w, v) | |||||
if cs.ContinueOnMethod { | |||||
w.Write(openParenBytes) | |||||
w.Write([]byte(iface.String())) | |||||
w.Write(closeParenBytes) | |||||
w.Write(spaceBytes) | |||||
return false | |||||
} | |||||
w.Write([]byte(iface.String())) | |||||
return true | |||||
} | |||||
return false | |||||
} | |||||
// printBool outputs a boolean value as true or false to Writer w. | |||||
func printBool(w io.Writer, val bool) { | |||||
if val { | |||||
w.Write(trueBytes) | |||||
} else { | |||||
w.Write(falseBytes) | |||||
} | |||||
} | |||||
// printInt outputs a signed integer value to Writer w. | |||||
func printInt(w io.Writer, val int64, base int) { | |||||
w.Write([]byte(strconv.FormatInt(val, base))) | |||||
} | |||||
// printUint outputs an unsigned integer value to Writer w. | |||||
func printUint(w io.Writer, val uint64, base int) { | |||||
w.Write([]byte(strconv.FormatUint(val, base))) | |||||
} | |||||
// printFloat outputs a floating point value using the specified precision, | |||||
// which is expected to be 32 or 64bit, to Writer w. | |||||
func printFloat(w io.Writer, val float64, precision int) { | |||||
w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision))) | |||||
} | |||||
// printComplex outputs a complex value using the specified float precision | |||||
// for the real and imaginary parts to Writer w. | |||||
func printComplex(w io.Writer, c complex128, floatPrecision int) { | |||||
r := real(c) | |||||
w.Write(openParenBytes) | |||||
w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision))) | |||||
i := imag(c) | |||||
if i >= 0 { | |||||
w.Write(plusBytes) | |||||
} | |||||
w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision))) | |||||
w.Write(iBytes) | |||||
w.Write(closeParenBytes) | |||||
} | |||||
// printHexPtr outputs a uintptr formatted as hexidecimal with a leading '0x' | |||||
// prefix to Writer w. | |||||
func printHexPtr(w io.Writer, p uintptr) { | |||||
// Null pointer. | |||||
num := uint64(p) | |||||
if num == 0 { | |||||
w.Write(nilAngleBytes) | |||||
return | |||||
} | |||||
// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix | |||||
buf := make([]byte, 18) | |||||
// It's simpler to construct the hex string right to left. | |||||
base := uint64(16) | |||||
i := len(buf) - 1 | |||||
for num >= base { | |||||
buf[i] = hexDigits[num%base] | |||||
num /= base | |||||
i-- | |||||
} | |||||
buf[i] = hexDigits[num] | |||||
// Add '0x' prefix. | |||||
i-- | |||||
buf[i] = 'x' | |||||
i-- | |||||
buf[i] = '0' | |||||
// Strip unused leading bytes. | |||||
buf = buf[i:] | |||||
w.Write(buf) | |||||
} | |||||
// valuesSorter implements sort.Interface to allow a slice of reflect.Value | |||||
// elements to be sorted. | |||||
type valuesSorter struct { | |||||
values []reflect.Value | |||||
strings []string // either nil or same len and values | |||||
cs *ConfigState | |||||
} | |||||
// newValuesSorter initializes a valuesSorter instance, which holds a set of | |||||
// surrogate keys on which the data should be sorted. It uses flags in | |||||
// ConfigState to decide if and how to populate those surrogate keys. | |||||
func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface { | |||||
vs := &valuesSorter{values: values, cs: cs} | |||||
if canSortSimply(vs.values[0].Kind()) { | |||||
return vs | |||||
} | |||||
if !cs.DisableMethods { | |||||
vs.strings = make([]string, len(values)) | |||||
for i := range vs.values { | |||||
b := bytes.Buffer{} | |||||
if !handleMethods(cs, &b, vs.values[i]) { | |||||
vs.strings = nil | |||||
break | |||||
} | |||||
vs.strings[i] = b.String() | |||||
} | |||||
} | |||||
if vs.strings == nil && cs.SpewKeys { | |||||
vs.strings = make([]string, len(values)) | |||||
for i := range vs.values { | |||||
vs.strings[i] = Sprintf("%#v", vs.values[i].Interface()) | |||||
} | |||||
} | |||||
return vs | |||||
} | |||||
// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted | |||||
// directly, or whether it should be considered for sorting by surrogate keys | |||||
// (if the ConfigState allows it). | |||||
func canSortSimply(kind reflect.Kind) bool { | |||||
// This switch parallels valueSortLess, except for the default case. | |||||
switch kind { | |||||
case reflect.Bool: | |||||
return true | |||||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: | |||||
return true | |||||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: | |||||
return true | |||||
case reflect.Float32, reflect.Float64: | |||||
return true | |||||
case reflect.String: | |||||
return true | |||||
case reflect.Uintptr: | |||||
return true | |||||
case reflect.Array: | |||||
return true | |||||
} | |||||
return false | |||||
} | |||||
// Len returns the number of values in the slice. It is part of the | |||||
// sort.Interface implementation. | |||||
func (s *valuesSorter) Len() int { | |||||
return len(s.values) | |||||
} | |||||
// Swap swaps the values at the passed indices. It is part of the | |||||
// sort.Interface implementation. | |||||
func (s *valuesSorter) Swap(i, j int) { | |||||
s.values[i], s.values[j] = s.values[j], s.values[i] | |||||
if s.strings != nil { | |||||
s.strings[i], s.strings[j] = s.strings[j], s.strings[i] | |||||
} | |||||
} | |||||
// valueSortLess returns whether the first value should sort before the second | |||||
// value. It is used by valueSorter.Less as part of the sort.Interface | |||||
// implementation. | |||||
func valueSortLess(a, b reflect.Value) bool { | |||||
switch a.Kind() { | |||||
case reflect.Bool: | |||||
return !a.Bool() && b.Bool() | |||||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: | |||||
return a.Int() < b.Int() | |||||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: | |||||
return a.Uint() < b.Uint() | |||||
case reflect.Float32, reflect.Float64: | |||||
return a.Float() < b.Float() | |||||
case reflect.String: | |||||
return a.String() < b.String() | |||||
case reflect.Uintptr: | |||||
return a.Uint() < b.Uint() | |||||
case reflect.Array: | |||||
// Compare the contents of both arrays. | |||||
l := a.Len() | |||||
for i := 0; i < l; i++ { | |||||
av := a.Index(i) | |||||
bv := b.Index(i) | |||||
if av.Interface() == bv.Interface() { | |||||
continue | |||||
} | |||||
return valueSortLess(av, bv) | |||||
} | |||||
} | |||||
return a.String() < b.String() | |||||
} | |||||
// Less returns whether the value at index i should sort before the | |||||
// value at index j. It is part of the sort.Interface implementation. | |||||
func (s *valuesSorter) Less(i, j int) bool { | |||||
if s.strings == nil { | |||||
return valueSortLess(s.values[i], s.values[j]) | |||||
} | |||||
return s.strings[i] < s.strings[j] | |||||
} | |||||
// sortValues is a sort function that handles both native types and any type that | |||||
// can be converted to error or Stringer. Other inputs are sorted according to | |||||
// their Value.String() value to ensure display stability. | |||||
func sortValues(values []reflect.Value, cs *ConfigState) { | |||||
if len(values) == 0 { | |||||
return | |||||
} | |||||
sort.Sort(newValuesSorter(values, cs)) | |||||
} |
@@ -0,0 +1,297 @@ | |||||
/* | |||||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||||
* | |||||
* Permission to use, copy, modify, and distribute this software for any | |||||
* purpose with or without fee is hereby granted, provided that the above | |||||
* copyright notice and this permission notice appear in all copies. | |||||
* | |||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||||
*/ | |||||
package spew | |||||
import ( | |||||
"bytes" | |||||
"fmt" | |||||
"io" | |||||
"os" | |||||
) | |||||
// ConfigState houses the configuration options used by spew to format and | |||||
// display values. There is a global instance, Config, that is used to control | |||||
// all top-level Formatter and Dump functionality. Each ConfigState instance | |||||
// provides methods equivalent to the top-level functions. | |||||
// | |||||
// The zero value for ConfigState provides no indentation. You would typically | |||||
// want to set it to a space or a tab. | |||||
// | |||||
// Alternatively, you can use NewDefaultConfig to get a ConfigState instance | |||||
// with default settings. See the documentation of NewDefaultConfig for default | |||||
// values. | |||||
type ConfigState struct { | |||||
// Indent specifies the string to use for each indentation level. The | |||||
// global config instance that all top-level functions use set this to a | |||||
// single space by default. If you would like more indentation, you might | |||||
// set this to a tab with "\t" or perhaps two spaces with " ". | |||||
Indent string | |||||
// MaxDepth controls the maximum number of levels to descend into nested | |||||
// data structures. The default, 0, means there is no limit. | |||||
// | |||||
// NOTE: Circular data structures are properly detected, so it is not | |||||
// necessary to set this value unless you specifically want to limit deeply | |||||
// nested data structures. | |||||
MaxDepth int | |||||
// DisableMethods specifies whether or not error and Stringer interfaces are | |||||
// invoked for types that implement them. | |||||
DisableMethods bool | |||||
// DisablePointerMethods specifies whether or not to check for and invoke | |||||
// error and Stringer interfaces on types which only accept a pointer | |||||
// receiver when the current type is not a pointer. | |||||
// | |||||
// NOTE: This might be an unsafe action since calling one of these methods | |||||
// with a pointer receiver could technically mutate the value, however, | |||||
// in practice, types which choose to satisify an error or Stringer | |||||
// interface with a pointer receiver should not be mutating their state | |||||
// inside these interface methods. As a result, this option relies on | |||||
// access to the unsafe package, so it will not have any effect when | |||||
// running in environments without access to the unsafe package such as | |||||
// Google App Engine or with the "safe" build tag specified. | |||||
DisablePointerMethods bool | |||||
// ContinueOnMethod specifies whether or not recursion should continue once | |||||
// a custom error or Stringer interface is invoked. The default, false, | |||||
// means it will print the results of invoking the custom error or Stringer | |||||
// interface and return immediately instead of continuing to recurse into | |||||
// the internals of the data type. | |||||
// | |||||
// NOTE: This flag does not have any effect if method invocation is disabled | |||||
// via the DisableMethods or DisablePointerMethods options. | |||||
ContinueOnMethod bool | |||||
// SortKeys specifies map keys should be sorted before being printed. Use | |||||
// this to have a more deterministic, diffable output. Note that only | |||||
// native types (bool, int, uint, floats, uintptr and string) and types | |||||
// that support the error or Stringer interfaces (if methods are | |||||
// enabled) are supported, with other types sorted according to the | |||||
// reflect.Value.String() output which guarantees display stability. | |||||
SortKeys bool | |||||
// SpewKeys specifies that, as a last resort attempt, map keys should | |||||
// be spewed to strings and sorted by those strings. This is only | |||||
// considered if SortKeys is true. | |||||
SpewKeys bool | |||||
} | |||||
// Config is the active configuration of the top-level functions. | |||||
// The configuration can be changed by modifying the contents of spew.Config. | |||||
var Config = ConfigState{Indent: " "} | |||||
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were | |||||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||||
// the formatted string as a value that satisfies error. See NewFormatter | |||||
// for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b)) | |||||
func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) { | |||||
return fmt.Errorf(format, c.convertArgs(a)...) | |||||
} | |||||
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were | |||||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||||
// the number of bytes written and any write error encountered. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b)) | |||||
func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) { | |||||
return fmt.Fprint(w, c.convertArgs(a)...) | |||||
} | |||||
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were | |||||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||||
// the number of bytes written and any write error encountered. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b)) | |||||
func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) { | |||||
return fmt.Fprintf(w, format, c.convertArgs(a)...) | |||||
} | |||||
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it | |||||
// passed with a Formatter interface returned by c.NewFormatter. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b)) | |||||
func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) { | |||||
return fmt.Fprintln(w, c.convertArgs(a)...) | |||||
} | |||||
// Print is a wrapper for fmt.Print that treats each argument as if it were | |||||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||||
// the number of bytes written and any write error encountered. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Print(c.NewFormatter(a), c.NewFormatter(b)) | |||||
func (c *ConfigState) Print(a ...interface{}) (n int, err error) { | |||||
return fmt.Print(c.convertArgs(a)...) | |||||
} | |||||
// Printf is a wrapper for fmt.Printf that treats each argument as if it were | |||||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||||
// the number of bytes written and any write error encountered. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b)) | |||||
func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) { | |||||
return fmt.Printf(format, c.convertArgs(a)...) | |||||
} | |||||
// Println is a wrapper for fmt.Println that treats each argument as if it were | |||||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||||
// the number of bytes written and any write error encountered. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Println(c.NewFormatter(a), c.NewFormatter(b)) | |||||
func (c *ConfigState) Println(a ...interface{}) (n int, err error) { | |||||
return fmt.Println(c.convertArgs(a)...) | |||||
} | |||||
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were | |||||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||||
// the resulting string. See NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b)) | |||||
func (c *ConfigState) Sprint(a ...interface{}) string { | |||||
return fmt.Sprint(c.convertArgs(a)...) | |||||
} | |||||
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were | |||||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||||
// the resulting string. See NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b)) | |||||
func (c *ConfigState) Sprintf(format string, a ...interface{}) string { | |||||
return fmt.Sprintf(format, c.convertArgs(a)...) | |||||
} | |||||
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it | |||||
// were passed with a Formatter interface returned by c.NewFormatter. It | |||||
// returns the resulting string. See NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b)) | |||||
func (c *ConfigState) Sprintln(a ...interface{}) string { | |||||
return fmt.Sprintln(c.convertArgs(a)...) | |||||
} | |||||
/* | |||||
NewFormatter returns a custom formatter that satisfies the fmt.Formatter | |||||
interface. As a result, it integrates cleanly with standard fmt package | |||||
printing functions. The formatter is useful for inline printing of smaller data | |||||
types similar to the standard %v format specifier. | |||||
The custom formatter only responds to the %v (most compact), %+v (adds pointer | |||||
addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb | |||||
combinations. Any other verbs such as %x and %q will be sent to the the | |||||
standard fmt package for formatting. In addition, the custom formatter ignores | |||||
the width and precision arguments (however they will still work on the format | |||||
specifiers not handled by the custom formatter). | |||||
Typically this function shouldn't be called directly. It is much easier to make | |||||
use of the custom formatter by calling one of the convenience functions such as | |||||
c.Printf, c.Println, or c.Printf. | |||||
*/ | |||||
func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter { | |||||
return newFormatter(c, v) | |||||
} | |||||
// Fdump formats and displays the passed arguments to io.Writer w. It formats | |||||
// exactly the same as Dump. | |||||
func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) { | |||||
fdump(c, w, a...) | |||||
} | |||||
/* | |||||
Dump displays the passed parameters to standard out with newlines, customizable | |||||
indentation, and additional debug information such as complete types and all | |||||
pointer addresses used to indirect to the final value. It provides the | |||||
following features over the built-in printing facilities provided by the fmt | |||||
package: | |||||
* Pointers are dereferenced and followed | |||||
* Circular data structures are detected and handled properly | |||||
* Custom Stringer/error interfaces are optionally invoked, including | |||||
on unexported types | |||||
* Custom types which only implement the Stringer/error interfaces via | |||||
a pointer receiver are optionally invoked when passing non-pointer | |||||
variables | |||||
* Byte arrays and slices are dumped like the hexdump -C command which | |||||
includes offsets, byte values in hex, and ASCII output | |||||
The configuration options are controlled by modifying the public members | |||||
of c. See ConfigState for options documentation. | |||||
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to | |||||
get the formatted result as a string. | |||||
*/ | |||||
func (c *ConfigState) Dump(a ...interface{}) { | |||||
fdump(c, os.Stdout, a...) | |||||
} | |||||
// Sdump returns a string with the passed arguments formatted exactly the same | |||||
// as Dump. | |||||
func (c *ConfigState) Sdump(a ...interface{}) string { | |||||
var buf bytes.Buffer | |||||
fdump(c, &buf, a...) | |||||
return buf.String() | |||||
} | |||||
// convertArgs accepts a slice of arguments and returns a slice of the same | |||||
// length with each argument converted to a spew Formatter interface using | |||||
// the ConfigState associated with s. | |||||
func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) { | |||||
formatters = make([]interface{}, len(args)) | |||||
for index, arg := range args { | |||||
formatters[index] = newFormatter(c, arg) | |||||
} | |||||
return formatters | |||||
} | |||||
// NewDefaultConfig returns a ConfigState with the following default settings. | |||||
// | |||||
// Indent: " " | |||||
// MaxDepth: 0 | |||||
// DisableMethods: false | |||||
// DisablePointerMethods: false | |||||
// ContinueOnMethod: false | |||||
// SortKeys: false | |||||
func NewDefaultConfig() *ConfigState { | |||||
return &ConfigState{Indent: " "} | |||||
} |
@@ -0,0 +1,202 @@ | |||||
/* | |||||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||||
* | |||||
* Permission to use, copy, modify, and distribute this software for any | |||||
* purpose with or without fee is hereby granted, provided that the above | |||||
* copyright notice and this permission notice appear in all copies. | |||||
* | |||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||||
*/ | |||||
/* | |||||
Package spew implements a deep pretty printer for Go data structures to aid in | |||||
debugging. | |||||
A quick overview of the additional features spew provides over the built-in | |||||
printing facilities for Go data types are as follows: | |||||
* Pointers are dereferenced and followed | |||||
* Circular data structures are detected and handled properly | |||||
* Custom Stringer/error interfaces are optionally invoked, including | |||||
on unexported types | |||||
* Custom types which only implement the Stringer/error interfaces via | |||||
a pointer receiver are optionally invoked when passing non-pointer | |||||
variables | |||||
* Byte arrays and slices are dumped like the hexdump -C command which | |||||
includes offsets, byte values in hex, and ASCII output (only when using | |||||
Dump style) | |||||
There are two different approaches spew allows for dumping Go data structures: | |||||
* Dump style which prints with newlines, customizable indentation, | |||||
and additional debug information such as types and all pointer addresses | |||||
used to indirect to the final value | |||||
* A custom Formatter interface that integrates cleanly with the standard fmt | |||||
package and replaces %v, %+v, %#v, and %#+v to provide inline printing | |||||
similar to the default %v while providing the additional functionality | |||||
outlined above and passing unsupported format verbs such as %x and %q | |||||
along to fmt | |||||
Quick Start | |||||
This section demonstrates how to quickly get started with spew. See the | |||||
sections below for further details on formatting and configuration options. | |||||
To dump a variable with full newlines, indentation, type, and pointer | |||||
information use Dump, Fdump, or Sdump: | |||||
spew.Dump(myVar1, myVar2, ...) | |||||
spew.Fdump(someWriter, myVar1, myVar2, ...) | |||||
str := spew.Sdump(myVar1, myVar2, ...) | |||||
Alternatively, if you would prefer to use format strings with a compacted inline | |||||
printing style, use the convenience wrappers Printf, Fprintf, etc with | |||||
%v (most compact), %+v (adds pointer addresses), %#v (adds types), or | |||||
%#+v (adds types and pointer addresses): | |||||
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2) | |||||
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) | |||||
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2) | |||||
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) | |||||
Configuration Options | |||||
Configuration of spew is handled by fields in the ConfigState type. For | |||||
convenience, all of the top-level functions use a global state available | |||||
via the spew.Config global. | |||||
It is also possible to create a ConfigState instance that provides methods | |||||
equivalent to the top-level functions. This allows concurrent configuration | |||||
options. See the ConfigState documentation for more details. | |||||
The following configuration options are available: | |||||
* Indent | |||||
String to use for each indentation level for Dump functions. | |||||
It is a single space by default. A popular alternative is "\t". | |||||
* MaxDepth | |||||
Maximum number of levels to descend into nested data structures. | |||||
There is no limit by default. | |||||
* DisableMethods | |||||
Disables invocation of error and Stringer interface methods. | |||||
Method invocation is enabled by default. | |||||
* DisablePointerMethods | |||||
Disables invocation of error and Stringer interface methods on types | |||||
which only accept pointer receivers from non-pointer variables. | |||||
Pointer method invocation is enabled by default. | |||||
* ContinueOnMethod | |||||
Enables recursion into types after invoking error and Stringer interface | |||||
methods. Recursion after method invocation is disabled by default. | |||||
* SortKeys | |||||
Specifies map keys should be sorted before being printed. Use | |||||
this to have a more deterministic, diffable output. Note that | |||||
only native types (bool, int, uint, floats, uintptr and string) | |||||
and types which implement error or Stringer interfaces are | |||||
supported with other types sorted according to the | |||||
reflect.Value.String() output which guarantees display | |||||
stability. Natural map order is used by default. | |||||
* SpewKeys | |||||
Specifies that, as a last resort attempt, map keys should be | |||||
spewed to strings and sorted by those strings. This is only | |||||
considered if SortKeys is true. | |||||
Dump Usage | |||||
Simply call spew.Dump with a list of variables you want to dump: | |||||
spew.Dump(myVar1, myVar2, ...) | |||||
You may also call spew.Fdump if you would prefer to output to an arbitrary | |||||
io.Writer. For example, to dump to standard error: | |||||
spew.Fdump(os.Stderr, myVar1, myVar2, ...) | |||||
A third option is to call spew.Sdump to get the formatted output as a string: | |||||
str := spew.Sdump(myVar1, myVar2, ...) | |||||
Sample Dump Output | |||||
See the Dump example for details on the setup of the types and variables being | |||||
shown here. | |||||
(main.Foo) { | |||||
unexportedField: (*main.Bar)(0xf84002e210)({ | |||||
flag: (main.Flag) flagTwo, | |||||
data: (uintptr) <nil> | |||||
}), | |||||
ExportedField: (map[interface {}]interface {}) (len=1) { | |||||
(string) (len=3) "one": (bool) true | |||||
} | |||||
} | |||||
Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C | |||||
command as shown. | |||||
([]uint8) (len=32 cap=32) { | |||||
00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... | | |||||
00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0| | |||||
00000020 31 32 |12| | |||||
} | |||||
Custom Formatter | |||||
Spew provides a custom formatter that implements the fmt.Formatter interface | |||||
so that it integrates cleanly with standard fmt package printing functions. The | |||||
formatter is useful for inline printing of smaller data types similar to the | |||||
standard %v format specifier. | |||||
The custom formatter only responds to the %v (most compact), %+v (adds pointer | |||||
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb | |||||
combinations. Any other verbs such as %x and %q will be sent to the the | |||||
standard fmt package for formatting. In addition, the custom formatter ignores | |||||
the width and precision arguments (however they will still work on the format | |||||
specifiers not handled by the custom formatter). | |||||
Custom Formatter Usage | |||||
The simplest way to make use of the spew custom formatter is to call one of the | |||||
convenience functions such as spew.Printf, spew.Println, or spew.Printf. The | |||||
functions have syntax you are most likely already familiar with: | |||||
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2) | |||||
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) | |||||
spew.Println(myVar, myVar2) | |||||
spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2) | |||||
spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) | |||||
See the Index for the full list convenience functions. | |||||
Sample Formatter Output | |||||
Double pointer to a uint8: | |||||
%v: <**>5 | |||||
%+v: <**>(0xf8400420d0->0xf8400420c8)5 | |||||
%#v: (**uint8)5 | |||||
%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5 | |||||
Pointer to circular struct with a uint8 field and a pointer to itself: | |||||
%v: <*>{1 <*><shown>} | |||||
%+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>} | |||||
%#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>} | |||||
%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>} | |||||
See the Printf example for details on the setup of variables being shown | |||||
here. | |||||
Errors | |||||
Since it is possible for custom Stringer/error interfaces to panic, spew | |||||
detects them and handles them internally by printing the panic information | |||||
inline with the output. Since spew is intended to provide deep pretty printing | |||||
capabilities on structures, it intentionally does not return any errors. | |||||
*/ | |||||
package spew |
@@ -0,0 +1,509 @@ | |||||
/* | |||||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||||
* | |||||
* Permission to use, copy, modify, and distribute this software for any | |||||
* purpose with or without fee is hereby granted, provided that the above | |||||
* copyright notice and this permission notice appear in all copies. | |||||
* | |||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||||
*/ | |||||
package spew | |||||
import ( | |||||
"bytes" | |||||
"encoding/hex" | |||||
"fmt" | |||||
"io" | |||||
"os" | |||||
"reflect" | |||||
"regexp" | |||||
"strconv" | |||||
"strings" | |||||
) | |||||
var ( | |||||
// uint8Type is a reflect.Type representing a uint8. It is used to | |||||
// convert cgo types to uint8 slices for hexdumping. | |||||
uint8Type = reflect.TypeOf(uint8(0)) | |||||
// cCharRE is a regular expression that matches a cgo char. | |||||
// It is used to detect character arrays to hexdump them. | |||||
cCharRE = regexp.MustCompile("^.*\\._Ctype_char$") | |||||
// cUnsignedCharRE is a regular expression that matches a cgo unsigned | |||||
// char. It is used to detect unsigned character arrays to hexdump | |||||
// them. | |||||
cUnsignedCharRE = regexp.MustCompile("^.*\\._Ctype_unsignedchar$") | |||||
// cUint8tCharRE is a regular expression that matches a cgo uint8_t. | |||||
// It is used to detect uint8_t arrays to hexdump them. | |||||
cUint8tCharRE = regexp.MustCompile("^.*\\._Ctype_uint8_t$") | |||||
) | |||||
// dumpState contains information about the state of a dump operation. | |||||
type dumpState struct { | |||||
w io.Writer | |||||
depth int | |||||
pointers map[uintptr]int | |||||
ignoreNextType bool | |||||
ignoreNextIndent bool | |||||
cs *ConfigState | |||||
} | |||||
// indent performs indentation according to the depth level and cs.Indent | |||||
// option. | |||||
func (d *dumpState) indent() { | |||||
if d.ignoreNextIndent { | |||||
d.ignoreNextIndent = false | |||||
return | |||||
} | |||||
d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth)) | |||||
} | |||||
// unpackValue returns values inside of non-nil interfaces when possible. | |||||
// This is useful for data types like structs, arrays, slices, and maps which | |||||
// can contain varying types packed inside an interface. | |||||
func (d *dumpState) unpackValue(v reflect.Value) reflect.Value { | |||||
if v.Kind() == reflect.Interface && !v.IsNil() { | |||||
v = v.Elem() | |||||
} | |||||
return v | |||||
} | |||||
// dumpPtr handles formatting of pointers by indirecting them as necessary. | |||||
func (d *dumpState) dumpPtr(v reflect.Value) { | |||||
// Remove pointers at or below the current depth from map used to detect | |||||
// circular refs. | |||||
for k, depth := range d.pointers { | |||||
if depth >= d.depth { | |||||
delete(d.pointers, k) | |||||
} | |||||
} | |||||
// Keep list of all dereferenced pointers to show later. | |||||
pointerChain := make([]uintptr, 0) | |||||
// Figure out how many levels of indirection there are by dereferencing | |||||
// pointers and unpacking interfaces down the chain while detecting circular | |||||
// references. | |||||
nilFound := false | |||||
cycleFound := false | |||||
indirects := 0 | |||||
ve := v | |||||
for ve.Kind() == reflect.Ptr { | |||||
if ve.IsNil() { | |||||
nilFound = true | |||||
break | |||||
} | |||||
indirects++ | |||||
addr := ve.Pointer() | |||||
pointerChain = append(pointerChain, addr) | |||||
if pd, ok := d.pointers[addr]; ok && pd < d.depth { | |||||
cycleFound = true | |||||
indirects-- | |||||
break | |||||
} | |||||
d.pointers[addr] = d.depth | |||||
ve = ve.Elem() | |||||
if ve.Kind() == reflect.Interface { | |||||
if ve.IsNil() { | |||||
nilFound = true | |||||
break | |||||
} | |||||
ve = ve.Elem() | |||||
} | |||||
} | |||||
// Display type information. | |||||
d.w.Write(openParenBytes) | |||||
d.w.Write(bytes.Repeat(asteriskBytes, indirects)) | |||||
d.w.Write([]byte(ve.Type().String())) | |||||
d.w.Write(closeParenBytes) | |||||
// Display pointer information. | |||||
if len(pointerChain) > 0 { | |||||
d.w.Write(openParenBytes) | |||||
for i, addr := range pointerChain { | |||||
if i > 0 { | |||||
d.w.Write(pointerChainBytes) | |||||
} | |||||
printHexPtr(d.w, addr) | |||||
} | |||||
d.w.Write(closeParenBytes) | |||||
} | |||||
// Display dereferenced value. | |||||
d.w.Write(openParenBytes) | |||||
switch { | |||||
case nilFound == true: | |||||
d.w.Write(nilAngleBytes) | |||||
case cycleFound == true: | |||||
d.w.Write(circularBytes) | |||||
default: | |||||
d.ignoreNextType = true | |||||
d.dump(ve) | |||||
} | |||||
d.w.Write(closeParenBytes) | |||||
} | |||||
// dumpSlice handles formatting of arrays and slices. Byte (uint8 under | |||||
// reflection) arrays and slices are dumped in hexdump -C fashion. | |||||
func (d *dumpState) dumpSlice(v reflect.Value) { | |||||
// Determine whether this type should be hex dumped or not. Also, | |||||
// for types which should be hexdumped, try to use the underlying data | |||||
// first, then fall back to trying to convert them to a uint8 slice. | |||||
var buf []uint8 | |||||
doConvert := false | |||||
doHexDump := false | |||||
numEntries := v.Len() | |||||
if numEntries > 0 { | |||||
vt := v.Index(0).Type() | |||||
vts := vt.String() | |||||
switch { | |||||
// C types that need to be converted. | |||||
case cCharRE.MatchString(vts): | |||||
fallthrough | |||||
case cUnsignedCharRE.MatchString(vts): | |||||
fallthrough | |||||
case cUint8tCharRE.MatchString(vts): | |||||
doConvert = true | |||||
// Try to use existing uint8 slices and fall back to converting | |||||
// and copying if that fails. | |||||
case vt.Kind() == reflect.Uint8: | |||||
// We need an addressable interface to convert the type | |||||
// to a byte slice. However, the reflect package won't | |||||
// give us an interface on certain things like | |||||
// unexported struct fields in order to enforce | |||||
// visibility rules. We use unsafe, when available, to | |||||
// bypass these restrictions since this package does not | |||||
// mutate the values. | |||||
vs := v | |||||
if !vs.CanInterface() || !vs.CanAddr() { | |||||
vs = unsafeReflectValue(vs) | |||||
} | |||||
if !UnsafeDisabled { | |||||
vs = vs.Slice(0, numEntries) | |||||
// Use the existing uint8 slice if it can be | |||||
// type asserted. | |||||
iface := vs.Interface() | |||||
if slice, ok := iface.([]uint8); ok { | |||||
buf = slice | |||||
doHexDump = true | |||||
break | |||||
} | |||||
} | |||||
// The underlying data needs to be converted if it can't | |||||
// be type asserted to a uint8 slice. | |||||
doConvert = true | |||||
} | |||||
// Copy and convert the underlying type if needed. | |||||
if doConvert && vt.ConvertibleTo(uint8Type) { | |||||
// Convert and copy each element into a uint8 byte | |||||
// slice. | |||||
buf = make([]uint8, numEntries) | |||||
for i := 0; i < numEntries; i++ { | |||||
vv := v.Index(i) | |||||
buf[i] = uint8(vv.Convert(uint8Type).Uint()) | |||||
} | |||||
doHexDump = true | |||||
} | |||||
} | |||||
// Hexdump the entire slice as needed. | |||||
if doHexDump { | |||||
indent := strings.Repeat(d.cs.Indent, d.depth) | |||||
str := indent + hex.Dump(buf) | |||||
str = strings.Replace(str, "\n", "\n"+indent, -1) | |||||
str = strings.TrimRight(str, d.cs.Indent) | |||||
d.w.Write([]byte(str)) | |||||
return | |||||
} | |||||
// Recursively call dump for each item. | |||||
for i := 0; i < numEntries; i++ { | |||||
d.dump(d.unpackValue(v.Index(i))) | |||||
if i < (numEntries - 1) { | |||||
d.w.Write(commaNewlineBytes) | |||||
} else { | |||||
d.w.Write(newlineBytes) | |||||
} | |||||
} | |||||
} | |||||
// dump is the main workhorse for dumping a value. It uses the passed reflect | |||||
// value to figure out what kind of object we are dealing with and formats it | |||||
// appropriately. It is a recursive function, however circular data structures | |||||
// are detected and handled properly. | |||||
func (d *dumpState) dump(v reflect.Value) { | |||||
// Handle invalid reflect values immediately. | |||||
kind := v.Kind() | |||||
if kind == reflect.Invalid { | |||||
d.w.Write(invalidAngleBytes) | |||||
return | |||||
} | |||||
// Handle pointers specially. | |||||
if kind == reflect.Ptr { | |||||
d.indent() | |||||
d.dumpPtr(v) | |||||
return | |||||
} | |||||
// Print type information unless already handled elsewhere. | |||||
if !d.ignoreNextType { | |||||
d.indent() | |||||
d.w.Write(openParenBytes) | |||||
d.w.Write([]byte(v.Type().String())) | |||||
d.w.Write(closeParenBytes) | |||||
d.w.Write(spaceBytes) | |||||
} | |||||
d.ignoreNextType = false | |||||
// Display length and capacity if the built-in len and cap functions | |||||
// work with the value's kind and the len/cap itself is non-zero. | |||||
valueLen, valueCap := 0, 0 | |||||
switch v.Kind() { | |||||
case reflect.Array, reflect.Slice, reflect.Chan: | |||||
valueLen, valueCap = v.Len(), v.Cap() | |||||
case reflect.Map, reflect.String: | |||||
valueLen = v.Len() | |||||
} | |||||
if valueLen != 0 || valueCap != 0 { | |||||
d.w.Write(openParenBytes) | |||||
if valueLen != 0 { | |||||
d.w.Write(lenEqualsBytes) | |||||
printInt(d.w, int64(valueLen), 10) | |||||
} | |||||
if valueCap != 0 { | |||||
if valueLen != 0 { | |||||
d.w.Write(spaceBytes) | |||||
} | |||||
d.w.Write(capEqualsBytes) | |||||
printInt(d.w, int64(valueCap), 10) | |||||
} | |||||
d.w.Write(closeParenBytes) | |||||
d.w.Write(spaceBytes) | |||||
} | |||||
// Call Stringer/error interfaces if they exist and the handle methods flag | |||||
// is enabled | |||||
if !d.cs.DisableMethods { | |||||
if (kind != reflect.Invalid) && (kind != reflect.Interface) { | |||||
if handled := handleMethods(d.cs, d.w, v); handled { | |||||
return | |||||
} | |||||
} | |||||
} | |||||
switch kind { | |||||
case reflect.Invalid: | |||||
// Do nothing. We should never get here since invalid has already | |||||
// been handled above. | |||||
case reflect.Bool: | |||||
printBool(d.w, v.Bool()) | |||||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: | |||||
printInt(d.w, v.Int(), 10) | |||||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: | |||||
printUint(d.w, v.Uint(), 10) | |||||
case reflect.Float32: | |||||
printFloat(d.w, v.Float(), 32) | |||||
case reflect.Float64: | |||||
printFloat(d.w, v.Float(), 64) | |||||
case reflect.Complex64: | |||||
printComplex(d.w, v.Complex(), 32) | |||||
case reflect.Complex128: | |||||
printComplex(d.w, v.Complex(), 64) | |||||
case reflect.Slice: | |||||
if v.IsNil() { | |||||
d.w.Write(nilAngleBytes) | |||||
break | |||||
} | |||||
fallthrough | |||||
case reflect.Array: | |||||
d.w.Write(openBraceNewlineBytes) | |||||
d.depth++ | |||||
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { | |||||
d.indent() | |||||
d.w.Write(maxNewlineBytes) | |||||
} else { | |||||
d.dumpSlice(v) | |||||
} | |||||
d.depth-- | |||||
d.indent() | |||||
d.w.Write(closeBraceBytes) | |||||
case reflect.String: | |||||
d.w.Write([]byte(strconv.Quote(v.String()))) | |||||
case reflect.Interface: | |||||
// The only time we should get here is for nil interfaces due to | |||||
// unpackValue calls. | |||||
if v.IsNil() { | |||||
d.w.Write(nilAngleBytes) | |||||
} | |||||
case reflect.Ptr: | |||||
// Do nothing. We should never get here since pointers have already | |||||
// been handled above. | |||||
case reflect.Map: | |||||
// nil maps should be indicated as different than empty maps | |||||
if v.IsNil() { | |||||
d.w.Write(nilAngleBytes) | |||||
break | |||||
} | |||||
d.w.Write(openBraceNewlineBytes) | |||||
d.depth++ | |||||
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { | |||||
d.indent() | |||||
d.w.Write(maxNewlineBytes) | |||||
} else { | |||||
numEntries := v.Len() | |||||
keys := v.MapKeys() | |||||
if d.cs.SortKeys { | |||||
sortValues(keys, d.cs) | |||||
} | |||||
for i, key := range keys { | |||||
d.dump(d.unpackValue(key)) | |||||
d.w.Write(colonSpaceBytes) | |||||
d.ignoreNextIndent = true | |||||
d.dump(d.unpackValue(v.MapIndex(key))) | |||||
if i < (numEntries - 1) { | |||||
d.w.Write(commaNewlineBytes) | |||||
} else { | |||||
d.w.Write(newlineBytes) | |||||
} | |||||
} | |||||
} | |||||
d.depth-- | |||||
d.indent() | |||||
d.w.Write(closeBraceBytes) | |||||
case reflect.Struct: | |||||
d.w.Write(openBraceNewlineBytes) | |||||
d.depth++ | |||||
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { | |||||
d.indent() | |||||
d.w.Write(maxNewlineBytes) | |||||
} else { | |||||
vt := v.Type() | |||||
numFields := v.NumField() | |||||
for i := 0; i < numFields; i++ { | |||||
d.indent() | |||||
vtf := vt.Field(i) | |||||
d.w.Write([]byte(vtf.Name)) | |||||
d.w.Write(colonSpaceBytes) | |||||
d.ignoreNextIndent = true | |||||
d.dump(d.unpackValue(v.Field(i))) | |||||
if i < (numFields - 1) { | |||||
d.w.Write(commaNewlineBytes) | |||||
} else { | |||||
d.w.Write(newlineBytes) | |||||
} | |||||
} | |||||
} | |||||
d.depth-- | |||||
d.indent() | |||||
d.w.Write(closeBraceBytes) | |||||
case reflect.Uintptr: | |||||
printHexPtr(d.w, uintptr(v.Uint())) | |||||
case reflect.UnsafePointer, reflect.Chan, reflect.Func: | |||||
printHexPtr(d.w, v.Pointer()) | |||||
// There were not any other types at the time this code was written, but | |||||
// fall back to letting the default fmt package handle it in case any new | |||||
// types are added. | |||||
default: | |||||
if v.CanInterface() { | |||||
fmt.Fprintf(d.w, "%v", v.Interface()) | |||||
} else { | |||||
fmt.Fprintf(d.w, "%v", v.String()) | |||||
} | |||||
} | |||||
} | |||||
// fdump is a helper function to consolidate the logic from the various public | |||||
// methods which take varying writers and config states. | |||||
func fdump(cs *ConfigState, w io.Writer, a ...interface{}) { | |||||
for _, arg := range a { | |||||
if arg == nil { | |||||
w.Write(interfaceBytes) | |||||
w.Write(spaceBytes) | |||||
w.Write(nilAngleBytes) | |||||
w.Write(newlineBytes) | |||||
continue | |||||
} | |||||
d := dumpState{w: w, cs: cs} | |||||
d.pointers = make(map[uintptr]int) | |||||
d.dump(reflect.ValueOf(arg)) | |||||
d.w.Write(newlineBytes) | |||||
} | |||||
} | |||||
// Fdump formats and displays the passed arguments to io.Writer w. It formats | |||||
// exactly the same as Dump. | |||||
func Fdump(w io.Writer, a ...interface{}) { | |||||
fdump(&Config, w, a...) | |||||
} | |||||
// Sdump returns a string with the passed arguments formatted exactly the same | |||||
// as Dump. | |||||
func Sdump(a ...interface{}) string { | |||||
var buf bytes.Buffer | |||||
fdump(&Config, &buf, a...) | |||||
return buf.String() | |||||
} | |||||
/* | |||||
Dump displays the passed parameters to standard out with newlines, customizable | |||||
indentation, and additional debug information such as complete types and all | |||||
pointer addresses used to indirect to the final value. It provides the | |||||
following features over the built-in printing facilities provided by the fmt | |||||
package: | |||||
* Pointers are dereferenced and followed | |||||
* Circular data structures are detected and handled properly | |||||
* Custom Stringer/error interfaces are optionally invoked, including | |||||
on unexported types | |||||
* Custom types which only implement the Stringer/error interfaces via | |||||
a pointer receiver are optionally invoked when passing non-pointer | |||||
variables | |||||
* Byte arrays and slices are dumped like the hexdump -C command which | |||||
includes offsets, byte values in hex, and ASCII output | |||||
The configuration options are controlled by an exported package global, | |||||
spew.Config. See ConfigState for options documentation. | |||||
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to | |||||
get the formatted result as a string. | |||||
*/ | |||||
func Dump(a ...interface{}) { | |||||
fdump(&Config, os.Stdout, a...) | |||||
} |
@@ -0,0 +1,419 @@ | |||||
/* | |||||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||||
* | |||||
* Permission to use, copy, modify, and distribute this software for any | |||||
* purpose with or without fee is hereby granted, provided that the above | |||||
* copyright notice and this permission notice appear in all copies. | |||||
* | |||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||||
*/ | |||||
package spew | |||||
import ( | |||||
"bytes" | |||||
"fmt" | |||||
"reflect" | |||||
"strconv" | |||||
"strings" | |||||
) | |||||
// supportedFlags is a list of all the character flags supported by fmt package. | |||||
const supportedFlags = "0-+# " | |||||
// formatState implements the fmt.Formatter interface and contains information | |||||
// about the state of a formatting operation. The NewFormatter function can | |||||
// be used to get a new Formatter which can be used directly as arguments | |||||
// in standard fmt package printing calls. | |||||
type formatState struct { | |||||
value interface{} | |||||
fs fmt.State | |||||
depth int | |||||
pointers map[uintptr]int | |||||
ignoreNextType bool | |||||
cs *ConfigState | |||||
} | |||||
// buildDefaultFormat recreates the original format string without precision | |||||
// and width information to pass in to fmt.Sprintf in the case of an | |||||
// unrecognized type. Unless new types are added to the language, this | |||||
// function won't ever be called. | |||||
func (f *formatState) buildDefaultFormat() (format string) { | |||||
buf := bytes.NewBuffer(percentBytes) | |||||
for _, flag := range supportedFlags { | |||||
if f.fs.Flag(int(flag)) { | |||||
buf.WriteRune(flag) | |||||
} | |||||
} | |||||
buf.WriteRune('v') | |||||
format = buf.String() | |||||
return format | |||||
} | |||||
// constructOrigFormat recreates the original format string including precision | |||||
// and width information to pass along to the standard fmt package. This allows | |||||
// automatic deferral of all format strings this package doesn't support. | |||||
func (f *formatState) constructOrigFormat(verb rune) (format string) { | |||||
buf := bytes.NewBuffer(percentBytes) | |||||
for _, flag := range supportedFlags { | |||||
if f.fs.Flag(int(flag)) { | |||||
buf.WriteRune(flag) | |||||
} | |||||
} | |||||
if width, ok := f.fs.Width(); ok { | |||||
buf.WriteString(strconv.Itoa(width)) | |||||
} | |||||
if precision, ok := f.fs.Precision(); ok { | |||||
buf.Write(precisionBytes) | |||||
buf.WriteString(strconv.Itoa(precision)) | |||||
} | |||||
buf.WriteRune(verb) | |||||
format = buf.String() | |||||
return format | |||||
} | |||||
// unpackValue returns values inside of non-nil interfaces when possible and | |||||
// ensures that types for values which have been unpacked from an interface | |||||
// are displayed when the show types flag is also set. | |||||
// This is useful for data types like structs, arrays, slices, and maps which | |||||
// can contain varying types packed inside an interface. | |||||
func (f *formatState) unpackValue(v reflect.Value) reflect.Value { | |||||
if v.Kind() == reflect.Interface { | |||||
f.ignoreNextType = false | |||||
if !v.IsNil() { | |||||
v = v.Elem() | |||||
} | |||||
} | |||||
return v | |||||
} | |||||
// formatPtr handles formatting of pointers by indirecting them as necessary. | |||||
func (f *formatState) formatPtr(v reflect.Value) { | |||||
// Display nil if top level pointer is nil. | |||||
showTypes := f.fs.Flag('#') | |||||
if v.IsNil() && (!showTypes || f.ignoreNextType) { | |||||
f.fs.Write(nilAngleBytes) | |||||
return | |||||
} | |||||
// Remove pointers at or below the current depth from map used to detect | |||||
// circular refs. | |||||
for k, depth := range f.pointers { | |||||
if depth >= f.depth { | |||||
delete(f.pointers, k) | |||||
} | |||||
} | |||||
// Keep list of all dereferenced pointers to possibly show later. | |||||
pointerChain := make([]uintptr, 0) | |||||
// Figure out how many levels of indirection there are by derferencing | |||||
// pointers and unpacking interfaces down the chain while detecting circular | |||||
// references. | |||||
nilFound := false | |||||
cycleFound := false | |||||
indirects := 0 | |||||
ve := v | |||||
for ve.Kind() == reflect.Ptr { | |||||
if ve.IsNil() { | |||||
nilFound = true | |||||
break | |||||
} | |||||
indirects++ | |||||
addr := ve.Pointer() | |||||
pointerChain = append(pointerChain, addr) | |||||
if pd, ok := f.pointers[addr]; ok && pd < f.depth { | |||||
cycleFound = true | |||||
indirects-- | |||||
break | |||||
} | |||||
f.pointers[addr] = f.depth | |||||
ve = ve.Elem() | |||||
if ve.Kind() == reflect.Interface { | |||||
if ve.IsNil() { | |||||
nilFound = true | |||||
break | |||||
} | |||||
ve = ve.Elem() | |||||
} | |||||
} | |||||
// Display type or indirection level depending on flags. | |||||
if showTypes && !f.ignoreNextType { | |||||
f.fs.Write(openParenBytes) | |||||
f.fs.Write(bytes.Repeat(asteriskBytes, indirects)) | |||||
f.fs.Write([]byte(ve.Type().String())) | |||||
f.fs.Write(closeParenBytes) | |||||
} else { | |||||
if nilFound || cycleFound { | |||||
indirects += strings.Count(ve.Type().String(), "*") | |||||
} | |||||
f.fs.Write(openAngleBytes) | |||||
f.fs.Write([]byte(strings.Repeat("*", indirects))) | |||||
f.fs.Write(closeAngleBytes) | |||||
} | |||||
// Display pointer information depending on flags. | |||||
if f.fs.Flag('+') && (len(pointerChain) > 0) { | |||||
f.fs.Write(openParenBytes) | |||||
for i, addr := range pointerChain { | |||||
if i > 0 { | |||||
f.fs.Write(pointerChainBytes) | |||||
} | |||||
printHexPtr(f.fs, addr) | |||||
} | |||||
f.fs.Write(closeParenBytes) | |||||
} | |||||
// Display dereferenced value. | |||||
switch { | |||||
case nilFound == true: | |||||
f.fs.Write(nilAngleBytes) | |||||
case cycleFound == true: | |||||
f.fs.Write(circularShortBytes) | |||||
default: | |||||
f.ignoreNextType = true | |||||
f.format(ve) | |||||
} | |||||
} | |||||
// format is the main workhorse for providing the Formatter interface. It | |||||
// uses the passed reflect value to figure out what kind of object we are | |||||
// dealing with and formats it appropriately. It is a recursive function, | |||||
// however circular data structures are detected and handled properly. | |||||
func (f *formatState) format(v reflect.Value) { | |||||
// Handle invalid reflect values immediately. | |||||
kind := v.Kind() | |||||
if kind == reflect.Invalid { | |||||
f.fs.Write(invalidAngleBytes) | |||||
return | |||||
} | |||||
// Handle pointers specially. | |||||
if kind == reflect.Ptr { | |||||
f.formatPtr(v) | |||||
return | |||||
} | |||||
// Print type information unless already handled elsewhere. | |||||
if !f.ignoreNextType && f.fs.Flag('#') { | |||||
f.fs.Write(openParenBytes) | |||||
f.fs.Write([]byte(v.Type().String())) | |||||
f.fs.Write(closeParenBytes) | |||||
} | |||||
f.ignoreNextType = false | |||||
// Call Stringer/error interfaces if they exist and the handle methods | |||||
// flag is enabled. | |||||
if !f.cs.DisableMethods { | |||||
if (kind != reflect.Invalid) && (kind != reflect.Interface) { | |||||
if handled := handleMethods(f.cs, f.fs, v); handled { | |||||
return | |||||
} | |||||
} | |||||
} | |||||
switch kind { | |||||
case reflect.Invalid: | |||||
// Do nothing. We should never get here since invalid has already | |||||
// been handled above. | |||||
case reflect.Bool: | |||||
printBool(f.fs, v.Bool()) | |||||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: | |||||
printInt(f.fs, v.Int(), 10) | |||||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: | |||||
printUint(f.fs, v.Uint(), 10) | |||||
case reflect.Float32: | |||||
printFloat(f.fs, v.Float(), 32) | |||||
case reflect.Float64: | |||||
printFloat(f.fs, v.Float(), 64) | |||||
case reflect.Complex64: | |||||
printComplex(f.fs, v.Complex(), 32) | |||||
case reflect.Complex128: | |||||
printComplex(f.fs, v.Complex(), 64) | |||||
case reflect.Slice: | |||||
if v.IsNil() { | |||||
f.fs.Write(nilAngleBytes) | |||||
break | |||||
} | |||||
fallthrough | |||||
case reflect.Array: | |||||
f.fs.Write(openBracketBytes) | |||||
f.depth++ | |||||
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) { | |||||
f.fs.Write(maxShortBytes) | |||||
} else { | |||||
numEntries := v.Len() | |||||
for i := 0; i < numEntries; i++ { | |||||
if i > 0 { | |||||
f.fs.Write(spaceBytes) | |||||
} | |||||
f.ignoreNextType = true | |||||
f.format(f.unpackValue(v.Index(i))) | |||||
} | |||||
} | |||||
f.depth-- | |||||
f.fs.Write(closeBracketBytes) | |||||
case reflect.String: | |||||
f.fs.Write([]byte(v.String())) | |||||
case reflect.Interface: | |||||
// The only time we should get here is for nil interfaces due to | |||||
// unpackValue calls. | |||||
if v.IsNil() { | |||||
f.fs.Write(nilAngleBytes) | |||||
} | |||||
case reflect.Ptr: | |||||
// Do nothing. We should never get here since pointers have already | |||||
// been handled above. | |||||
case reflect.Map: | |||||
// nil maps should be indicated as different than empty maps | |||||
if v.IsNil() { | |||||
f.fs.Write(nilAngleBytes) | |||||
break | |||||
} | |||||
f.fs.Write(openMapBytes) | |||||
f.depth++ | |||||
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) { | |||||
f.fs.Write(maxShortBytes) | |||||
} else { | |||||
keys := v.MapKeys() | |||||
if f.cs.SortKeys { | |||||
sortValues(keys, f.cs) | |||||
} | |||||
for i, key := range keys { | |||||
if i > 0 { | |||||
f.fs.Write(spaceBytes) | |||||
} | |||||
f.ignoreNextType = true | |||||
f.format(f.unpackValue(key)) | |||||
f.fs.Write(colonBytes) | |||||
f.ignoreNextType = true | |||||
f.format(f.unpackValue(v.MapIndex(key))) | |||||
} | |||||
} | |||||
f.depth-- | |||||
f.fs.Write(closeMapBytes) | |||||
case reflect.Struct: | |||||
numFields := v.NumField() | |||||
f.fs.Write(openBraceBytes) | |||||
f.depth++ | |||||
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) { | |||||
f.fs.Write(maxShortBytes) | |||||
} else { | |||||
vt := v.Type() | |||||
for i := 0; i < numFields; i++ { | |||||
if i > 0 { | |||||
f.fs.Write(spaceBytes) | |||||
} | |||||
vtf := vt.Field(i) | |||||
if f.fs.Flag('+') || f.fs.Flag('#') { | |||||
f.fs.Write([]byte(vtf.Name)) | |||||
f.fs.Write(colonBytes) | |||||
} | |||||
f.format(f.unpackValue(v.Field(i))) | |||||
} | |||||
} | |||||
f.depth-- | |||||
f.fs.Write(closeBraceBytes) | |||||
case reflect.Uintptr: | |||||
printHexPtr(f.fs, uintptr(v.Uint())) | |||||
case reflect.UnsafePointer, reflect.Chan, reflect.Func: | |||||
printHexPtr(f.fs, v.Pointer()) | |||||
// There were not any other types at the time this code was written, but | |||||
// fall back to letting the default fmt package handle it if any get added. | |||||
default: | |||||
format := f.buildDefaultFormat() | |||||
if v.CanInterface() { | |||||
fmt.Fprintf(f.fs, format, v.Interface()) | |||||
} else { | |||||
fmt.Fprintf(f.fs, format, v.String()) | |||||
} | |||||
} | |||||
} | |||||
// Format satisfies the fmt.Formatter interface. See NewFormatter for usage | |||||
// details. | |||||
func (f *formatState) Format(fs fmt.State, verb rune) { | |||||
f.fs = fs | |||||
// Use standard formatting for verbs that are not v. | |||||
if verb != 'v' { | |||||
format := f.constructOrigFormat(verb) | |||||
fmt.Fprintf(fs, format, f.value) | |||||
return | |||||
} | |||||
if f.value == nil { | |||||
if fs.Flag('#') { | |||||
fs.Write(interfaceBytes) | |||||
} | |||||
fs.Write(nilAngleBytes) | |||||
return | |||||
} | |||||
f.format(reflect.ValueOf(f.value)) | |||||
} | |||||
// newFormatter is a helper function to consolidate the logic from the various | |||||
// public methods which take varying config states. | |||||
func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter { | |||||
fs := &formatState{value: v, cs: cs} | |||||
fs.pointers = make(map[uintptr]int) | |||||
return fs | |||||
} | |||||
/* | |||||
NewFormatter returns a custom formatter that satisfies the fmt.Formatter | |||||
interface. As a result, it integrates cleanly with standard fmt package | |||||
printing functions. The formatter is useful for inline printing of smaller data | |||||
types similar to the standard %v format specifier. | |||||
The custom formatter only responds to the %v (most compact), %+v (adds pointer | |||||
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb | |||||
combinations. Any other verbs such as %x and %q will be sent to the the | |||||
standard fmt package for formatting. In addition, the custom formatter ignores | |||||
the width and precision arguments (however they will still work on the format | |||||
specifiers not handled by the custom formatter). | |||||
Typically this function shouldn't be called directly. It is much easier to make | |||||
use of the custom formatter by calling one of the convenience functions such as | |||||
Printf, Println, or Fprintf. | |||||
*/ | |||||
func NewFormatter(v interface{}) fmt.Formatter { | |||||
return newFormatter(&Config, v) | |||||
} |
@@ -0,0 +1,148 @@ | |||||
/* | |||||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||||
* | |||||
* Permission to use, copy, modify, and distribute this software for any | |||||
* purpose with or without fee is hereby granted, provided that the above | |||||
* copyright notice and this permission notice appear in all copies. | |||||
* | |||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||||
*/ | |||||
package spew | |||||
import ( | |||||
"fmt" | |||||
"io" | |||||
) | |||||
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were | |||||
// passed with a default Formatter interface returned by NewFormatter. It | |||||
// returns the formatted string as a value that satisfies error. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b)) | |||||
func Errorf(format string, a ...interface{}) (err error) { | |||||
return fmt.Errorf(format, convertArgs(a)...) | |||||
} | |||||
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were | |||||
// passed with a default Formatter interface returned by NewFormatter. It | |||||
// returns the number of bytes written and any write error encountered. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b)) | |||||
func Fprint(w io.Writer, a ...interface{}) (n int, err error) { | |||||
return fmt.Fprint(w, convertArgs(a)...) | |||||
} | |||||
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were | |||||
// passed with a default Formatter interface returned by NewFormatter. It | |||||
// returns the number of bytes written and any write error encountered. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b)) | |||||
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) { | |||||
return fmt.Fprintf(w, format, convertArgs(a)...) | |||||
} | |||||
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it | |||||
// passed with a default Formatter interface returned by NewFormatter. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b)) | |||||
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) { | |||||
return fmt.Fprintln(w, convertArgs(a)...) | |||||
} | |||||
// Print is a wrapper for fmt.Print that treats each argument as if it were | |||||
// passed with a default Formatter interface returned by NewFormatter. It | |||||
// returns the number of bytes written and any write error encountered. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b)) | |||||
func Print(a ...interface{}) (n int, err error) { | |||||
return fmt.Print(convertArgs(a)...) | |||||
} | |||||
// Printf is a wrapper for fmt.Printf that treats each argument as if it were | |||||
// passed with a default Formatter interface returned by NewFormatter. It | |||||
// returns the number of bytes written and any write error encountered. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b)) | |||||
func Printf(format string, a ...interface{}) (n int, err error) { | |||||
return fmt.Printf(format, convertArgs(a)...) | |||||
} | |||||
// Println is a wrapper for fmt.Println that treats each argument as if it were | |||||
// passed with a default Formatter interface returned by NewFormatter. It | |||||
// returns the number of bytes written and any write error encountered. See | |||||
// NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b)) | |||||
func Println(a ...interface{}) (n int, err error) { | |||||
return fmt.Println(convertArgs(a)...) | |||||
} | |||||
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were | |||||
// passed with a default Formatter interface returned by NewFormatter. It | |||||
// returns the resulting string. See NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b)) | |||||
func Sprint(a ...interface{}) string { | |||||
return fmt.Sprint(convertArgs(a)...) | |||||
} | |||||
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were | |||||
// passed with a default Formatter interface returned by NewFormatter. It | |||||
// returns the resulting string. See NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b)) | |||||
func Sprintf(format string, a ...interface{}) string { | |||||
return fmt.Sprintf(format, convertArgs(a)...) | |||||
} | |||||
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it | |||||
// were passed with a default Formatter interface returned by NewFormatter. It | |||||
// returns the resulting string. See NewFormatter for formatting details. | |||||
// | |||||
// This function is shorthand for the following syntax: | |||||
// | |||||
// fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b)) | |||||
func Sprintln(a ...interface{}) string { | |||||
return fmt.Sprintln(convertArgs(a)...) | |||||
} | |||||
// convertArgs accepts a slice of arguments and returns a slice of the same | |||||
// length with each argument converted to a default spew Formatter interface. | |||||
func convertArgs(args []interface{}) (formatters []interface{}) { | |||||
formatters = make([]interface{}, len(args)) | |||||
for index, arg := range args { | |||||
formatters[index] = NewFormatter(arg) | |||||
} | |||||
return formatters | |||||
} |
@@ -0,0 +1,27 @@ | |||||
Copyright (c) 2013, Patrick Mezard | |||||
All rights reserved. | |||||
Redistribution and use in source and binary forms, with or without | |||||
modification, are permitted provided that the following conditions are | |||||
met: | |||||
Redistributions of source code must retain the above copyright | |||||
notice, this list of conditions and the following disclaimer. | |||||
Redistributions in binary form must reproduce the above copyright | |||||
notice, this list of conditions and the following disclaimer in the | |||||
documentation and/or other materials provided with the distribution. | |||||
The names of its contributors may not be used to endorse or promote | |||||
products derived from this software without specific prior written | |||||
permission. | |||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS | |||||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED | |||||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A | |||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||||
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED | |||||
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
@@ -0,0 +1,758 @@ | |||||
// Package difflib is a partial port of Python difflib module. | |||||
// | |||||
// It provides tools to compare sequences of strings and generate textual diffs. | |||||
// | |||||
// The following class and functions have been ported: | |||||
// | |||||
// - SequenceMatcher | |||||
// | |||||
// - unified_diff | |||||
// | |||||
// - context_diff | |||||
// | |||||
// Getting unified diffs was the main goal of the port. Keep in mind this code | |||||
// is mostly suitable to output text differences in a human friendly way, there | |||||
// are no guarantees generated diffs are consumable by patch(1). | |||||
package difflib | |||||
import ( | |||||
"bufio" | |||||
"bytes" | |||||
"fmt" | |||||
"io" | |||||
"strings" | |||||
) | |||||
func min(a, b int) int { | |||||
if a < b { | |||||
return a | |||||
} | |||||
return b | |||||
} | |||||
func max(a, b int) int { | |||||
if a > b { | |||||
return a | |||||
} | |||||
return b | |||||
} | |||||
func calculateRatio(matches, length int) float64 { | |||||
if length > 0 { | |||||
return 2.0 * float64(matches) / float64(length) | |||||
} | |||||
return 1.0 | |||||
} | |||||
type Match struct { | |||||
A int | |||||
B int | |||||
Size int | |||||
} | |||||
type OpCode struct { | |||||
Tag byte | |||||
I1 int | |||||
I2 int | |||||
J1 int | |||||
J2 int | |||||
} | |||||
// SequenceMatcher compares sequence of strings. The basic | |||||
// algorithm predates, and is a little fancier than, an algorithm | |||||
// published in the late 1980's by Ratcliff and Obershelp under the | |||||
// hyperbolic name "gestalt pattern matching". The basic idea is to find | |||||
// the longest contiguous matching subsequence that contains no "junk" | |||||
// elements (R-O doesn't address junk). The same idea is then applied | |||||
// recursively to the pieces of the sequences to the left and to the right | |||||
// of the matching subsequence. This does not yield minimal edit | |||||
// sequences, but does tend to yield matches that "look right" to people. | |||||
// | |||||
// SequenceMatcher tries to compute a "human-friendly diff" between two | |||||
// sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the | |||||
// longest *contiguous* & junk-free matching subsequence. That's what | |||||
// catches peoples' eyes. The Windows(tm) windiff has another interesting | |||||
// notion, pairing up elements that appear uniquely in each sequence. | |||||
// That, and the method here, appear to yield more intuitive difference | |||||
// reports than does diff. This method appears to be the least vulnerable | |||||
// to synching up on blocks of "junk lines", though (like blank lines in | |||||
// ordinary text files, or maybe "<P>" lines in HTML files). That may be | |||||
// because this is the only method of the 3 that has a *concept* of | |||||
// "junk" <wink>. | |||||
// | |||||
// Timing: Basic R-O is cubic time worst case and quadratic time expected | |||||
// case. SequenceMatcher is quadratic time for the worst case and has | |||||
// expected-case behavior dependent in a complicated way on how many | |||||
// elements the sequences have in common; best case time is linear. | |||||
type SequenceMatcher struct { | |||||
a []string | |||||
b []string | |||||
b2j map[string][]int | |||||
IsJunk func(string) bool | |||||
autoJunk bool | |||||
bJunk map[string]struct{} | |||||
matchingBlocks []Match | |||||
fullBCount map[string]int | |||||
bPopular map[string]struct{} | |||||
opCodes []OpCode | |||||
} | |||||
func NewMatcher(a, b []string) *SequenceMatcher { | |||||
m := SequenceMatcher{autoJunk: true} | |||||
m.SetSeqs(a, b) | |||||
return &m | |||||
} | |||||
func NewMatcherWithJunk(a, b []string, autoJunk bool, | |||||
isJunk func(string) bool) *SequenceMatcher { | |||||
m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk} | |||||
m.SetSeqs(a, b) | |||||
return &m | |||||
} | |||||
// Set two sequences to be compared. | |||||
func (m *SequenceMatcher) SetSeqs(a, b []string) { | |||||
m.SetSeq1(a) | |||||
m.SetSeq2(b) | |||||
} | |||||
// Set the first sequence to be compared. The second sequence to be compared is | |||||
// not changed. | |||||
// | |||||
// SequenceMatcher computes and caches detailed information about the second | |||||
// sequence, so if you want to compare one sequence S against many sequences, | |||||
// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other | |||||
// sequences. | |||||
// | |||||
// See also SetSeqs() and SetSeq2(). | |||||
func (m *SequenceMatcher) SetSeq1(a []string) { | |||||
if &a == &m.a { | |||||
return | |||||
} | |||||
m.a = a | |||||
m.matchingBlocks = nil | |||||
m.opCodes = nil | |||||
} | |||||
// Set the second sequence to be compared. The first sequence to be compared is | |||||
// not changed. | |||||
func (m *SequenceMatcher) SetSeq2(b []string) { | |||||
if &b == &m.b { | |||||
return | |||||
} | |||||
m.b = b | |||||
m.matchingBlocks = nil | |||||
m.opCodes = nil | |||||
m.fullBCount = nil | |||||
m.chainB() | |||||
} | |||||
func (m *SequenceMatcher) chainB() { | |||||
// Populate line -> index mapping | |||||
b2j := map[string][]int{} | |||||
for i, s := range m.b { | |||||
indices := b2j[s] | |||||
indices = append(indices, i) | |||||
b2j[s] = indices | |||||
} | |||||
// Purge junk elements | |||||
m.bJunk = map[string]struct{}{} | |||||
if m.IsJunk != nil { | |||||
junk := m.bJunk | |||||
for s, _ := range b2j { | |||||
if m.IsJunk(s) { | |||||
junk[s] = struct{}{} | |||||
} | |||||
} | |||||
for s, _ := range junk { | |||||
delete(b2j, s) | |||||
} | |||||
} | |||||
// Purge remaining popular elements | |||||
popular := map[string]struct{}{} | |||||
n := len(m.b) | |||||
if m.autoJunk && n >= 200 { | |||||
ntest := n/100 + 1 | |||||
for s, indices := range b2j { | |||||
if len(indices) > ntest { | |||||
popular[s] = struct{}{} | |||||
} | |||||
} | |||||
for s, _ := range popular { | |||||
delete(b2j, s) | |||||
} | |||||
} | |||||
m.bPopular = popular | |||||
m.b2j = b2j | |||||
} | |||||
func (m *SequenceMatcher) isBJunk(s string) bool { | |||||
_, ok := m.bJunk[s] | |||||
return ok | |||||
} | |||||
// Find longest matching block in a[alo:ahi] and b[blo:bhi]. | |||||
// | |||||
// If IsJunk is not defined: | |||||
// | |||||
// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where | |||||
// alo <= i <= i+k <= ahi | |||||
// blo <= j <= j+k <= bhi | |||||
// and for all (i',j',k') meeting those conditions, | |||||
// k >= k' | |||||
// i <= i' | |||||
// and if i == i', j <= j' | |||||
// | |||||
// In other words, of all maximal matching blocks, return one that | |||||
// starts earliest in a, and of all those maximal matching blocks that | |||||
// start earliest in a, return the one that starts earliest in b. | |||||
// | |||||
// If IsJunk is defined, first the longest matching block is | |||||
// determined as above, but with the additional restriction that no | |||||
// junk element appears in the block. Then that block is extended as | |||||
// far as possible by matching (only) junk elements on both sides. So | |||||
// the resulting block never matches on junk except as identical junk | |||||
// happens to be adjacent to an "interesting" match. | |||||
// | |||||
// If no blocks match, return (alo, blo, 0). | |||||
func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match { | |||||
// CAUTION: stripping common prefix or suffix would be incorrect. | |||||
// E.g., | |||||
// ab | |||||
// acab | |||||
// Longest matching block is "ab", but if common prefix is | |||||
// stripped, it's "a" (tied with "b"). UNIX(tm) diff does so | |||||
// strip, so ends up claiming that ab is changed to acab by | |||||
// inserting "ca" in the middle. That's minimal but unintuitive: | |||||
// "it's obvious" that someone inserted "ac" at the front. | |||||
// Windiff ends up at the same place as diff, but by pairing up | |||||
// the unique 'b's and then matching the first two 'a's. | |||||
besti, bestj, bestsize := alo, blo, 0 | |||||
// find longest junk-free match | |||||
// during an iteration of the loop, j2len[j] = length of longest | |||||
// junk-free match ending with a[i-1] and b[j] | |||||
j2len := map[int]int{} | |||||
for i := alo; i != ahi; i++ { | |||||
// look at all instances of a[i] in b; note that because | |||||
// b2j has no junk keys, the loop is skipped if a[i] is junk | |||||
newj2len := map[int]int{} | |||||
for _, j := range m.b2j[m.a[i]] { | |||||
// a[i] matches b[j] | |||||
if j < blo { | |||||
continue | |||||
} | |||||
if j >= bhi { | |||||
break | |||||
} | |||||
k := j2len[j-1] + 1 | |||||
newj2len[j] = k | |||||
if k > bestsize { | |||||
besti, bestj, bestsize = i-k+1, j-k+1, k | |||||
} | |||||
} | |||||
j2len = newj2len | |||||
} | |||||
// Extend the best by non-junk elements on each end. In particular, | |||||
// "popular" non-junk elements aren't in b2j, which greatly speeds | |||||
// the inner loop above, but also means "the best" match so far | |||||
// doesn't contain any junk *or* popular non-junk elements. | |||||
for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) && | |||||
m.a[besti-1] == m.b[bestj-1] { | |||||
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1 | |||||
} | |||||
for besti+bestsize < ahi && bestj+bestsize < bhi && | |||||
!m.isBJunk(m.b[bestj+bestsize]) && | |||||
m.a[besti+bestsize] == m.b[bestj+bestsize] { | |||||
bestsize += 1 | |||||
} | |||||
// Now that we have a wholly interesting match (albeit possibly | |||||
// empty!), we may as well suck up the matching junk on each | |||||
// side of it too. Can't think of a good reason not to, and it | |||||
// saves post-processing the (possibly considerable) expense of | |||||
// figuring out what to do with it. In the case of an empty | |||||
// interesting match, this is clearly the right thing to do, | |||||
// because no other kind of match is possible in the regions. | |||||
for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) && | |||||
m.a[besti-1] == m.b[bestj-1] { | |||||
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1 | |||||
} | |||||
for besti+bestsize < ahi && bestj+bestsize < bhi && | |||||
m.isBJunk(m.b[bestj+bestsize]) && | |||||
m.a[besti+bestsize] == m.b[bestj+bestsize] { | |||||
bestsize += 1 | |||||
} | |||||
return Match{A: besti, B: bestj, Size: bestsize} | |||||
} | |||||
// Return list of triples describing matching subsequences. | |||||
// | |||||
// Each triple is of the form (i, j, n), and means that | |||||
// a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in | |||||
// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are | |||||
// adjacent triples in the list, and the second is not the last triple in the | |||||
// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe | |||||
// adjacent equal blocks. | |||||
// | |||||
// The last triple is a dummy, (len(a), len(b), 0), and is the only | |||||
// triple with n==0. | |||||
func (m *SequenceMatcher) GetMatchingBlocks() []Match { | |||||
if m.matchingBlocks != nil { | |||||
return m.matchingBlocks | |||||
} | |||||
var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match | |||||
matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match { | |||||
match := m.findLongestMatch(alo, ahi, blo, bhi) | |||||
i, j, k := match.A, match.B, match.Size | |||||
if match.Size > 0 { | |||||
if alo < i && blo < j { | |||||
matched = matchBlocks(alo, i, blo, j, matched) | |||||
} | |||||
matched = append(matched, match) | |||||
if i+k < ahi && j+k < bhi { | |||||
matched = matchBlocks(i+k, ahi, j+k, bhi, matched) | |||||
} | |||||
} | |||||
return matched | |||||
} | |||||
matched := matchBlocks(0, len(m.a), 0, len(m.b), nil) | |||||
// It's possible that we have adjacent equal blocks in the | |||||
// matching_blocks list now. | |||||
nonAdjacent := []Match{} | |||||
i1, j1, k1 := 0, 0, 0 | |||||
for _, b := range matched { | |||||
// Is this block adjacent to i1, j1, k1? | |||||
i2, j2, k2 := b.A, b.B, b.Size | |||||
if i1+k1 == i2 && j1+k1 == j2 { | |||||
// Yes, so collapse them -- this just increases the length of | |||||
// the first block by the length of the second, and the first | |||||
// block so lengthened remains the block to compare against. | |||||
k1 += k2 | |||||
} else { | |||||
// Not adjacent. Remember the first block (k1==0 means it's | |||||
// the dummy we started with), and make the second block the | |||||
// new block to compare against. | |||||
if k1 > 0 { | |||||
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1}) | |||||
} | |||||
i1, j1, k1 = i2, j2, k2 | |||||
} | |||||
} | |||||
if k1 > 0 { | |||||
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1}) | |||||
} | |||||
nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0}) | |||||
m.matchingBlocks = nonAdjacent | |||||
return m.matchingBlocks | |||||
} | |||||
// Return list of 5-tuples describing how to turn a into b. | |||||
// | |||||
// Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple | |||||
// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the | |||||
// tuple preceding it, and likewise for j1 == the previous j2. | |||||
// | |||||
// The tags are characters, with these meanings: | |||||
// | |||||
// 'r' (replace): a[i1:i2] should be replaced by b[j1:j2] | |||||
// | |||||
// 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case. | |||||
// | |||||
// 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case. | |||||
// | |||||
// 'e' (equal): a[i1:i2] == b[j1:j2] | |||||
func (m *SequenceMatcher) GetOpCodes() []OpCode { | |||||
if m.opCodes != nil { | |||||
return m.opCodes | |||||
} | |||||
i, j := 0, 0 | |||||
matching := m.GetMatchingBlocks() | |||||
opCodes := make([]OpCode, 0, len(matching)) | |||||
for _, m := range matching { | |||||
// invariant: we've pumped out correct diffs to change | |||||
// a[:i] into b[:j], and the next matching block is | |||||
// a[ai:ai+size] == b[bj:bj+size]. So we need to pump | |||||
// out a diff to change a[i:ai] into b[j:bj], pump out | |||||
// the matching block, and move (i,j) beyond the match | |||||
ai, bj, size := m.A, m.B, m.Size | |||||
tag := byte(0) | |||||
if i < ai && j < bj { | |||||
tag = 'r' | |||||
} else if i < ai { | |||||
tag = 'd' | |||||
} else if j < bj { | |||||
tag = 'i' | |||||
} | |||||
if tag > 0 { | |||||
opCodes = append(opCodes, OpCode{tag, i, ai, j, bj}) | |||||
} | |||||
i, j = ai+size, bj+size | |||||
// the list of matching blocks is terminated by a | |||||
// sentinel with size 0 | |||||
if size > 0 { | |||||
opCodes = append(opCodes, OpCode{'e', ai, i, bj, j}) | |||||
} | |||||
} | |||||
m.opCodes = opCodes | |||||
return m.opCodes | |||||
} | |||||
// Isolate change clusters by eliminating ranges with no changes. | |||||
// | |||||
// Return a generator of groups with up to n lines of context. | |||||
// Each group is in the same format as returned by GetOpCodes(). | |||||
func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode { | |||||
if n < 0 { | |||||
n = 3 | |||||
} | |||||
codes := m.GetOpCodes() | |||||
if len(codes) == 0 { | |||||
codes = []OpCode{OpCode{'e', 0, 1, 0, 1}} | |||||
} | |||||
// Fixup leading and trailing groups if they show no changes. | |||||
if codes[0].Tag == 'e' { | |||||
c := codes[0] | |||||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2 | |||||
codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2} | |||||
} | |||||
if codes[len(codes)-1].Tag == 'e' { | |||||
c := codes[len(codes)-1] | |||||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2 | |||||
codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)} | |||||
} | |||||
nn := n + n | |||||
groups := [][]OpCode{} | |||||
group := []OpCode{} | |||||
for _, c := range codes { | |||||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2 | |||||
// End the current group and start a new one whenever | |||||
// there is a large range with no changes. | |||||
if c.Tag == 'e' && i2-i1 > nn { | |||||
group = append(group, OpCode{c.Tag, i1, min(i2, i1+n), | |||||
j1, min(j2, j1+n)}) | |||||
groups = append(groups, group) | |||||
group = []OpCode{} | |||||
i1, j1 = max(i1, i2-n), max(j1, j2-n) | |||||
} | |||||
group = append(group, OpCode{c.Tag, i1, i2, j1, j2}) | |||||
} | |||||
if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') { | |||||
groups = append(groups, group) | |||||
} | |||||
return groups | |||||
} | |||||
// Return a measure of the sequences' similarity (float in [0,1]). | |||||
// | |||||
// Where T is the total number of elements in both sequences, and | |||||
// M is the number of matches, this is 2.0*M / T. | |||||
// Note that this is 1 if the sequences are identical, and 0 if | |||||
// they have nothing in common. | |||||
// | |||||
// .Ratio() is expensive to compute if you haven't already computed | |||||
// .GetMatchingBlocks() or .GetOpCodes(), in which case you may | |||||
// want to try .QuickRatio() or .RealQuickRation() first to get an | |||||
// upper bound. | |||||
func (m *SequenceMatcher) Ratio() float64 { | |||||
matches := 0 | |||||
for _, m := range m.GetMatchingBlocks() { | |||||
matches += m.Size | |||||
} | |||||
return calculateRatio(matches, len(m.a)+len(m.b)) | |||||
} | |||||
// Return an upper bound on ratio() relatively quickly. | |||||
// | |||||
// This isn't defined beyond that it is an upper bound on .Ratio(), and | |||||
// is faster to compute. | |||||
func (m *SequenceMatcher) QuickRatio() float64 { | |||||
// viewing a and b as multisets, set matches to the cardinality | |||||
// of their intersection; this counts the number of matches | |||||
// without regard to order, so is clearly an upper bound | |||||
if m.fullBCount == nil { | |||||
m.fullBCount = map[string]int{} | |||||
for _, s := range m.b { | |||||
m.fullBCount[s] = m.fullBCount[s] + 1 | |||||
} | |||||
} | |||||
// avail[x] is the number of times x appears in 'b' less the | |||||
// number of times we've seen it in 'a' so far ... kinda | |||||
avail := map[string]int{} | |||||
matches := 0 | |||||
for _, s := range m.a { | |||||
n, ok := avail[s] | |||||
if !ok { | |||||
n = m.fullBCount[s] | |||||
} | |||||
avail[s] = n - 1 | |||||
if n > 0 { | |||||
matches += 1 | |||||
} | |||||
} | |||||
return calculateRatio(matches, len(m.a)+len(m.b)) | |||||
} | |||||
// Return an upper bound on ratio() very quickly. | |||||
// | |||||
// This isn't defined beyond that it is an upper bound on .Ratio(), and | |||||
// is faster to compute than either .Ratio() or .QuickRatio(). | |||||
func (m *SequenceMatcher) RealQuickRatio() float64 { | |||||
la, lb := len(m.a), len(m.b) | |||||
return calculateRatio(min(la, lb), la+lb) | |||||
} | |||||
// Convert range to the "ed" format | |||||
func formatRangeUnified(start, stop int) string { | |||||
// Per the diff spec at http://www.unix.org/single_unix_specification/ | |||||
beginning := start + 1 // lines start numbering with one | |||||
length := stop - start | |||||
if length == 1 { | |||||
return fmt.Sprintf("%d", beginning) | |||||
} | |||||
if length == 0 { | |||||
beginning -= 1 // empty ranges begin at line just before the range | |||||
} | |||||
return fmt.Sprintf("%d,%d", beginning, length) | |||||
} | |||||
// Unified diff parameters | |||||
type UnifiedDiff struct { | |||||
A []string // First sequence lines | |||||
FromFile string // First file name | |||||
FromDate string // First file time | |||||
B []string // Second sequence lines | |||||
ToFile string // Second file name | |||||
ToDate string // Second file time | |||||
Eol string // Headers end of line, defaults to LF | |||||
Context int // Number of context lines | |||||
} | |||||
// Compare two sequences of lines; generate the delta as a unified diff. | |||||
// | |||||
// Unified diffs are a compact way of showing line changes and a few | |||||
// lines of context. The number of context lines is set by 'n' which | |||||
// defaults to three. | |||||
// | |||||
// By default, the diff control lines (those with ---, +++, or @@) are | |||||
// created with a trailing newline. This is helpful so that inputs | |||||
// created from file.readlines() result in diffs that are suitable for | |||||
// file.writelines() since both the inputs and outputs have trailing | |||||
// newlines. | |||||
// | |||||
// For inputs that do not have trailing newlines, set the lineterm | |||||
// argument to "" so that the output will be uniformly newline free. | |||||
// | |||||
// The unidiff format normally has a header for filenames and modification | |||||
// times. Any or all of these may be specified using strings for | |||||
// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'. | |||||
// The modification times are normally expressed in the ISO 8601 format. | |||||
func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error { | |||||
buf := bufio.NewWriter(writer) | |||||
defer buf.Flush() | |||||
w := func(format string, args ...interface{}) error { | |||||
_, err := buf.WriteString(fmt.Sprintf(format, args...)) | |||||
return err | |||||
} | |||||
if len(diff.Eol) == 0 { | |||||
diff.Eol = "\n" | |||||
} | |||||
started := false | |||||
m := NewMatcher(diff.A, diff.B) | |||||
for _, g := range m.GetGroupedOpCodes(diff.Context) { | |||||
if !started { | |||||
started = true | |||||
fromDate := "" | |||||
if len(diff.FromDate) > 0 { | |||||
fromDate = "\t" + diff.FromDate | |||||
} | |||||
toDate := "" | |||||
if len(diff.ToDate) > 0 { | |||||
toDate = "\t" + diff.ToDate | |||||
} | |||||
err := w("--- %s%s%s", diff.FromFile, fromDate, diff.Eol) | |||||
if err != nil { | |||||
return err | |||||
} | |||||
err = w("+++ %s%s%s", diff.ToFile, toDate, diff.Eol) | |||||
if err != nil { | |||||
return err | |||||
} | |||||
} | |||||
first, last := g[0], g[len(g)-1] | |||||
range1 := formatRangeUnified(first.I1, last.I2) | |||||
range2 := formatRangeUnified(first.J1, last.J2) | |||||
if err := w("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil { | |||||
return err | |||||
} | |||||
for _, c := range g { | |||||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2 | |||||
if c.Tag == 'e' { | |||||
for _, line := range diff.A[i1:i2] { | |||||
if err := w(" " + line); err != nil { | |||||
return err | |||||
} | |||||
} | |||||
continue | |||||
} | |||||
if c.Tag == 'r' || c.Tag == 'd' { | |||||
for _, line := range diff.A[i1:i2] { | |||||
if err := w("-" + line); err != nil { | |||||
return err | |||||
} | |||||
} | |||||
} | |||||
if c.Tag == 'r' || c.Tag == 'i' { | |||||
for _, line := range diff.B[j1:j2] { | |||||
if err := w("+" + line); err != nil { | |||||
return err | |||||
} | |||||
} | |||||
} | |||||
} | |||||
} | |||||
return nil | |||||
} | |||||
// Like WriteUnifiedDiff but returns the diff a string. | |||||
func GetUnifiedDiffString(diff UnifiedDiff) (string, error) { | |||||
w := &bytes.Buffer{} | |||||
err := WriteUnifiedDiff(w, diff) | |||||
return string(w.Bytes()), err | |||||
} | |||||
// Convert range to the "ed" format. | |||||
func formatRangeContext(start, stop int) string { | |||||
// Per the diff spec at http://www.unix.org/single_unix_specification/ | |||||
beginning := start + 1 // lines start numbering with one | |||||
length := stop - start | |||||
if length == 0 { | |||||
beginning -= 1 // empty ranges begin at line just before the range | |||||
} | |||||
if length <= 1 { | |||||
return fmt.Sprintf("%d", beginning) | |||||
} | |||||
return fmt.Sprintf("%d,%d", beginning, beginning+length-1) | |||||
} | |||||
type ContextDiff UnifiedDiff | |||||
// Compare two sequences of lines; generate the delta as a context diff. | |||||
// | |||||
// Context diffs are a compact way of showing line changes and a few | |||||
// lines of context. The number of context lines is set by diff.Context | |||||
// which defaults to three. | |||||
// | |||||
// By default, the diff control lines (those with *** or ---) are | |||||
// created with a trailing newline. | |||||
// | |||||
// For inputs that do not have trailing newlines, set the diff.Eol | |||||
// argument to "" so that the output will be uniformly newline free. | |||||
// | |||||
// The context diff format normally has a header for filenames and | |||||
// modification times. Any or all of these may be specified using | |||||
// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate. | |||||
// The modification times are normally expressed in the ISO 8601 format. | |||||
// If not specified, the strings default to blanks. | |||||
func WriteContextDiff(writer io.Writer, diff ContextDiff) error { | |||||
buf := bufio.NewWriter(writer) | |||||
defer buf.Flush() | |||||
var diffErr error | |||||
w := func(format string, args ...interface{}) { | |||||
_, err := buf.WriteString(fmt.Sprintf(format, args...)) | |||||
if diffErr == nil && err != nil { | |||||
diffErr = err | |||||
} | |||||
} | |||||
if len(diff.Eol) == 0 { | |||||
diff.Eol = "\n" | |||||
} | |||||
prefix := map[byte]string{ | |||||
'i': "+ ", | |||||
'd': "- ", | |||||
'r': "! ", | |||||
'e': " ", | |||||
} | |||||
started := false | |||||
m := NewMatcher(diff.A, diff.B) | |||||
for _, g := range m.GetGroupedOpCodes(diff.Context) { | |||||
if !started { | |||||
started = true | |||||
fromDate := "" | |||||
if len(diff.FromDate) > 0 { | |||||
fromDate = "\t" + diff.FromDate | |||||
} | |||||
toDate := "" | |||||
if len(diff.ToDate) > 0 { | |||||
toDate = "\t" + diff.ToDate | |||||
} | |||||
w("*** %s%s%s", diff.FromFile, fromDate, diff.Eol) | |||||
w("--- %s%s%s", diff.ToFile, toDate, diff.Eol) | |||||
} | |||||
first, last := g[0], g[len(g)-1] | |||||
w("***************" + diff.Eol) | |||||
range1 := formatRangeContext(first.I1, last.I2) | |||||
w("*** %s ****%s", range1, diff.Eol) | |||||
for _, c := range g { | |||||
if c.Tag == 'r' || c.Tag == 'd' { | |||||
for _, cc := range g { | |||||
if cc.Tag == 'i' { | |||||
continue | |||||
} | |||||
for _, line := range diff.A[cc.I1:cc.I2] { | |||||
w(prefix[cc.Tag] + line) | |||||
} | |||||
} | |||||
break | |||||
} | |||||
} | |||||
range2 := formatRangeContext(first.J1, last.J2) | |||||
w("--- %s ----%s", range2, diff.Eol) | |||||
for _, c := range g { | |||||
if c.Tag == 'r' || c.Tag == 'i' { | |||||
for _, cc := range g { | |||||
if cc.Tag == 'd' { | |||||
continue | |||||
} | |||||
for _, line := range diff.B[cc.J1:cc.J2] { | |||||
w(prefix[cc.Tag] + line) | |||||
} | |||||
} | |||||
break | |||||
} | |||||
} | |||||
} | |||||
return diffErr | |||||
} | |||||
// Like WriteContextDiff but returns the diff a string. | |||||
func GetContextDiffString(diff ContextDiff) (string, error) { | |||||
w := &bytes.Buffer{} | |||||
err := WriteContextDiff(w, diff) | |||||
return string(w.Bytes()), err | |||||
} | |||||
// Split a string on "\n" while preserving them. The output can be used | |||||
// as input for UnifiedDiff and ContextDiff structures. | |||||
func SplitLines(s string) []string { | |||||
lines := strings.SplitAfter(s, "\n") | |||||
lines[len(lines)-1] += "\n" | |||||
return lines | |||||
} |
@@ -0,0 +1,22 @@ | |||||
Copyright (c) 2012 - 2013 Mat Ryer and Tyler Bunnell | |||||
Please consider promoting this project if you find it useful. | |||||
Permission is hereby granted, free of charge, to any person | |||||
obtaining a copy of this software and associated documentation | |||||
files (the "Software"), to deal in the Software without restriction, | |||||
including without limitation the rights to use, copy, modify, merge, | |||||
publish, distribute, sublicense, and/or sell copies of the Software, | |||||
and to permit persons to whom the Software is furnished to do so, | |||||
subject to the following conditions: | |||||
The above copyright notice and this permission notice shall be included | |||||
in all copies or substantial portions of the Software. | |||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | |||||
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT | |||||
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE | |||||
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
@@ -0,0 +1,346 @@ | |||||
/* | |||||
* CODE GENERATED AUTOMATICALLY WITH github.com/stretchr/testify/_codegen | |||||
* THIS FILE MUST NOT BE EDITED BY HAND | |||||
*/ | |||||
package assert | |||||
import ( | |||||
http "net/http" | |||||
url "net/url" | |||||
time "time" | |||||
) | |||||
// Condition uses a Comparison to assert a complex condition. | |||||
func (a *Assertions) Condition(comp Comparison, msgAndArgs ...interface{}) bool { | |||||
return Condition(a.t, comp, msgAndArgs...) | |||||
} | |||||
// Contains asserts that the specified string, list(array, slice...) or map contains the | |||||
// specified substring or element. | |||||
// | |||||
// a.Contains("Hello World", "World", "But 'Hello World' does contain 'World'") | |||||
// a.Contains(["Hello", "World"], "World", "But ["Hello", "World"] does contain 'World'") | |||||
// a.Contains({"Hello": "World"}, "Hello", "But {'Hello': 'World'} does contain 'Hello'") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) Contains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool { | |||||
return Contains(a.t, s, contains, msgAndArgs...) | |||||
} | |||||
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either | |||||
// a slice or a channel with len == 0. | |||||
// | |||||
// a.Empty(obj) | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) Empty(object interface{}, msgAndArgs ...interface{}) bool { | |||||
return Empty(a.t, object, msgAndArgs...) | |||||
} | |||||
// Equal asserts that two objects are equal. | |||||
// | |||||
// a.Equal(123, 123, "123 and 123 should be equal") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) Equal(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool { | |||||
return Equal(a.t, expected, actual, msgAndArgs...) | |||||
} | |||||
// EqualError asserts that a function returned an error (i.e. not `nil`) | |||||
// and that it is equal to the provided error. | |||||
// | |||||
// actualObj, err := SomeFunction() | |||||
// a.EqualError(err, expectedErrorString, "An error was expected") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) EqualError(theError error, errString string, msgAndArgs ...interface{}) bool { | |||||
return EqualError(a.t, theError, errString, msgAndArgs...) | |||||
} | |||||
// EqualValues asserts that two objects are equal or convertable to the same types | |||||
// and equal. | |||||
// | |||||
// a.EqualValues(uint32(123), int32(123), "123 and 123 should be equal") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) EqualValues(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool { | |||||
return EqualValues(a.t, expected, actual, msgAndArgs...) | |||||
} | |||||
// Error asserts that a function returned an error (i.e. not `nil`). | |||||
// | |||||
// actualObj, err := SomeFunction() | |||||
// if a.Error(err, "An error was expected") { | |||||
// assert.Equal(t, err, expectedError) | |||||
// } | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) Error(err error, msgAndArgs ...interface{}) bool { | |||||
return Error(a.t, err, msgAndArgs...) | |||||
} | |||||
// Exactly asserts that two objects are equal is value and type. | |||||
// | |||||
// a.Exactly(int32(123), int64(123), "123 and 123 should NOT be equal") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) Exactly(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool { | |||||
return Exactly(a.t, expected, actual, msgAndArgs...) | |||||
} | |||||
// Fail reports a failure through | |||||
func (a *Assertions) Fail(failureMessage string, msgAndArgs ...interface{}) bool { | |||||
return Fail(a.t, failureMessage, msgAndArgs...) | |||||
} | |||||
// FailNow fails test | |||||
func (a *Assertions) FailNow(failureMessage string, msgAndArgs ...interface{}) bool { | |||||
return FailNow(a.t, failureMessage, msgAndArgs...) | |||||
} | |||||
// False asserts that the specified value is false. | |||||
// | |||||
// a.False(myBool, "myBool should be false") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) False(value bool, msgAndArgs ...interface{}) bool { | |||||
return False(a.t, value, msgAndArgs...) | |||||
} | |||||
// HTTPBodyContains asserts that a specified handler returns a | |||||
// body that contains a string. | |||||
// | |||||
// a.HTTPBodyContains(myHandler, "www.google.com", nil, "I'm Feeling Lucky") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) HTTPBodyContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool { | |||||
return HTTPBodyContains(a.t, handler, method, url, values, str) | |||||
} | |||||
// HTTPBodyNotContains asserts that a specified handler returns a | |||||
// body that does not contain a string. | |||||
// | |||||
// a.HTTPBodyNotContains(myHandler, "www.google.com", nil, "I'm Feeling Lucky") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) HTTPBodyNotContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool { | |||||
return HTTPBodyNotContains(a.t, handler, method, url, values, str) | |||||
} | |||||
// HTTPError asserts that a specified handler returns an error status code. | |||||
// | |||||
// a.HTTPError(myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}} | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) HTTPError(handler http.HandlerFunc, method string, url string, values url.Values) bool { | |||||
return HTTPError(a.t, handler, method, url, values) | |||||
} | |||||
// HTTPRedirect asserts that a specified handler returns a redirect status code. | |||||
// | |||||
// a.HTTPRedirect(myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}} | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) HTTPRedirect(handler http.HandlerFunc, method string, url string, values url.Values) bool { | |||||
return HTTPRedirect(a.t, handler, method, url, values) | |||||
} | |||||
// HTTPSuccess asserts that a specified handler returns a success status code. | |||||
// | |||||
// a.HTTPSuccess(myHandler, "POST", "http://www.google.com", nil) | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) HTTPSuccess(handler http.HandlerFunc, method string, url string, values url.Values) bool { | |||||
return HTTPSuccess(a.t, handler, method, url, values) | |||||
} | |||||
// Implements asserts that an object is implemented by the specified interface. | |||||
// | |||||
// a.Implements((*MyInterface)(nil), new(MyObject), "MyObject") | |||||
func (a *Assertions) Implements(interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool { | |||||
return Implements(a.t, interfaceObject, object, msgAndArgs...) | |||||
} | |||||
// InDelta asserts that the two numerals are within delta of each other. | |||||
// | |||||
// a.InDelta(math.Pi, (22 / 7.0), 0.01) | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) InDelta(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool { | |||||
return InDelta(a.t, expected, actual, delta, msgAndArgs...) | |||||
} | |||||
// InDeltaSlice is the same as InDelta, except it compares two slices. | |||||
func (a *Assertions) InDeltaSlice(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool { | |||||
return InDeltaSlice(a.t, expected, actual, delta, msgAndArgs...) | |||||
} | |||||
// InEpsilon asserts that expected and actual have a relative error less than epsilon | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) InEpsilon(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool { | |||||
return InEpsilon(a.t, expected, actual, epsilon, msgAndArgs...) | |||||
} | |||||
// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices. | |||||
func (a *Assertions) InEpsilonSlice(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool { | |||||
return InEpsilonSlice(a.t, expected, actual, epsilon, msgAndArgs...) | |||||
} | |||||
// IsType asserts that the specified objects are of the same type. | |||||
func (a *Assertions) IsType(expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool { | |||||
return IsType(a.t, expectedType, object, msgAndArgs...) | |||||
} | |||||
// JSONEq asserts that two JSON strings are equivalent. | |||||
// | |||||
// a.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`) | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) JSONEq(expected string, actual string, msgAndArgs ...interface{}) bool { | |||||
return JSONEq(a.t, expected, actual, msgAndArgs...) | |||||
} | |||||
// Len asserts that the specified object has specific length. | |||||
// Len also fails if the object has a type that len() not accept. | |||||
// | |||||
// a.Len(mySlice, 3, "The size of slice is not 3") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) Len(object interface{}, length int, msgAndArgs ...interface{}) bool { | |||||
return Len(a.t, object, length, msgAndArgs...) | |||||
} | |||||
// Nil asserts that the specified object is nil. | |||||
// | |||||
// a.Nil(err, "err should be nothing") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) Nil(object interface{}, msgAndArgs ...interface{}) bool { | |||||
return Nil(a.t, object, msgAndArgs...) | |||||
} | |||||
// NoError asserts that a function returned no error (i.e. `nil`). | |||||
// | |||||
// actualObj, err := SomeFunction() | |||||
// if a.NoError(err) { | |||||
// assert.Equal(t, actualObj, expectedObj) | |||||
// } | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) NoError(err error, msgAndArgs ...interface{}) bool { | |||||
return NoError(a.t, err, msgAndArgs...) | |||||
} | |||||
// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the | |||||
// specified substring or element. | |||||
// | |||||
// a.NotContains("Hello World", "Earth", "But 'Hello World' does NOT contain 'Earth'") | |||||
// a.NotContains(["Hello", "World"], "Earth", "But ['Hello', 'World'] does NOT contain 'Earth'") | |||||
// a.NotContains({"Hello": "World"}, "Earth", "But {'Hello': 'World'} does NOT contain 'Earth'") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) NotContains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool { | |||||
return NotContains(a.t, s, contains, msgAndArgs...) | |||||
} | |||||
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either | |||||
// a slice or a channel with len == 0. | |||||
// | |||||
// if a.NotEmpty(obj) { | |||||
// assert.Equal(t, "two", obj[1]) | |||||
// } | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) NotEmpty(object interface{}, msgAndArgs ...interface{}) bool { | |||||
return NotEmpty(a.t, object, msgAndArgs...) | |||||
} | |||||
// NotEqual asserts that the specified values are NOT equal. | |||||
// | |||||
// a.NotEqual(obj1, obj2, "two objects shouldn't be equal") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) NotEqual(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool { | |||||
return NotEqual(a.t, expected, actual, msgAndArgs...) | |||||
} | |||||
// NotNil asserts that the specified object is not nil. | |||||
// | |||||
// a.NotNil(err, "err should be something") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) NotNil(object interface{}, msgAndArgs ...interface{}) bool { | |||||
return NotNil(a.t, object, msgAndArgs...) | |||||
} | |||||
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic. | |||||
// | |||||
// a.NotPanics(func(){ | |||||
// RemainCalm() | |||||
// }, "Calling RemainCalm() should NOT panic") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) NotPanics(f PanicTestFunc, msgAndArgs ...interface{}) bool { | |||||
return NotPanics(a.t, f, msgAndArgs...) | |||||
} | |||||
// NotRegexp asserts that a specified regexp does not match a string. | |||||
// | |||||
// a.NotRegexp(regexp.MustCompile("starts"), "it's starting") | |||||
// a.NotRegexp("^start", "it's not starting") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) NotRegexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool { | |||||
return NotRegexp(a.t, rx, str, msgAndArgs...) | |||||
} | |||||
// NotZero asserts that i is not the zero value for its type and returns the truth. | |||||
func (a *Assertions) NotZero(i interface{}, msgAndArgs ...interface{}) bool { | |||||
return NotZero(a.t, i, msgAndArgs...) | |||||
} | |||||
// Panics asserts that the code inside the specified PanicTestFunc panics. | |||||
// | |||||
// a.Panics(func(){ | |||||
// GoCrazy() | |||||
// }, "Calling GoCrazy() should panic") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) Panics(f PanicTestFunc, msgAndArgs ...interface{}) bool { | |||||
return Panics(a.t, f, msgAndArgs...) | |||||
} | |||||
// Regexp asserts that a specified regexp matches a string. | |||||
// | |||||
// a.Regexp(regexp.MustCompile("start"), "it's starting") | |||||
// a.Regexp("start...$", "it's not starting") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) Regexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool { | |||||
return Regexp(a.t, rx, str, msgAndArgs...) | |||||
} | |||||
// True asserts that the specified value is true. | |||||
// | |||||
// a.True(myBool, "myBool should be true") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) True(value bool, msgAndArgs ...interface{}) bool { | |||||
return True(a.t, value, msgAndArgs...) | |||||
} | |||||
// WithinDuration asserts that the two times are within duration delta of each other. | |||||
// | |||||
// a.WithinDuration(time.Now(), time.Now(), 10*time.Second, "The difference should not be more than 10s") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func (a *Assertions) WithinDuration(expected time.Time, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool { | |||||
return WithinDuration(a.t, expected, actual, delta, msgAndArgs...) | |||||
} | |||||
// Zero asserts that i is the zero value for its type and returns the truth. | |||||
func (a *Assertions) Zero(i interface{}, msgAndArgs ...interface{}) bool { | |||||
return Zero(a.t, i, msgAndArgs...) | |||||
} |
@@ -0,0 +1,4 @@ | |||||
{{.CommentWithoutT "a"}} | |||||
func (a *Assertions) {{.DocInfo.Name}}({{.Params}}) bool { | |||||
return {{.DocInfo.Name}}(a.t, {{.ForwardedParams}}) | |||||
} |
@@ -0,0 +1,45 @@ | |||||
// Package assert provides a set of comprehensive testing tools for use with the normal Go testing system. | |||||
// | |||||
// Example Usage | |||||
// | |||||
// The following is a complete example using assert in a standard test function: | |||||
// import ( | |||||
// "testing" | |||||
// "github.com/stretchr/testify/assert" | |||||
// ) | |||||
// | |||||
// func TestSomething(t *testing.T) { | |||||
// | |||||
// var a string = "Hello" | |||||
// var b string = "Hello" | |||||
// | |||||
// assert.Equal(t, a, b, "The two words should be the same.") | |||||
// | |||||
// } | |||||
// | |||||
// if you assert many times, use the format below: | |||||
// | |||||
// import ( | |||||
// "testing" | |||||
// "github.com/stretchr/testify/assert" | |||||
// ) | |||||
// | |||||
// func TestSomething(t *testing.T) { | |||||
// assert := assert.New(t) | |||||
// | |||||
// var a string = "Hello" | |||||
// var b string = "Hello" | |||||
// | |||||
// assert.Equal(a, b, "The two words should be the same.") | |||||
// } | |||||
// | |||||
// Assertions | |||||
// | |||||
// Assertions allow you to easily write test code, and are global funcs in the `assert` package. | |||||
// All assertion functions take, as the first argument, the `*testing.T` object provided by the | |||||
// testing framework. This allows the assertion funcs to write the failings and other details to | |||||
// the correct place. | |||||
// | |||||
// Every assertion function also takes an optional string message as the final argument, | |||||
// allowing custom error messages to be appended to the message the assertion method outputs. | |||||
package assert |
@@ -0,0 +1,10 @@ | |||||
package assert | |||||
import ( | |||||
"errors" | |||||
) | |||||
// AnError is an error instance useful for testing. If the code does not care | |||||
// about error specifics, and only needs to return the error for example, this | |||||
// error should be used to make the test code more readable. | |||||
var AnError = errors.New("assert.AnError general error for testing") |
@@ -0,0 +1,16 @@ | |||||
package assert | |||||
// Assertions provides assertion methods around the | |||||
// TestingT interface. | |||||
type Assertions struct { | |||||
t TestingT | |||||
} | |||||
// New makes a new Assertions object for the specified TestingT. | |||||
func New(t TestingT) *Assertions { | |||||
return &Assertions{ | |||||
t: t, | |||||
} | |||||
} | |||||
//go:generate go run ../_codegen/main.go -output-package=assert -template=assertion_forward.go.tmpl |
@@ -0,0 +1,106 @@ | |||||
package assert | |||||
import ( | |||||
"fmt" | |||||
"net/http" | |||||
"net/http/httptest" | |||||
"net/url" | |||||
"strings" | |||||
) | |||||
// httpCode is a helper that returns HTTP code of the response. It returns -1 | |||||
// if building a new request fails. | |||||
func httpCode(handler http.HandlerFunc, method, url string, values url.Values) int { | |||||
w := httptest.NewRecorder() | |||||
req, err := http.NewRequest(method, url+"?"+values.Encode(), nil) | |||||
if err != nil { | |||||
return -1 | |||||
} | |||||
handler(w, req) | |||||
return w.Code | |||||
} | |||||
// HTTPSuccess asserts that a specified handler returns a success status code. | |||||
// | |||||
// assert.HTTPSuccess(t, myHandler, "POST", "http://www.google.com", nil) | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func HTTPSuccess(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool { | |||||
code := httpCode(handler, method, url, values) | |||||
if code == -1 { | |||||
return false | |||||
} | |||||
return code >= http.StatusOK && code <= http.StatusPartialContent | |||||
} | |||||
// HTTPRedirect asserts that a specified handler returns a redirect status code. | |||||
// | |||||
// assert.HTTPRedirect(t, myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}} | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func HTTPRedirect(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool { | |||||
code := httpCode(handler, method, url, values) | |||||
if code == -1 { | |||||
return false | |||||
} | |||||
return code >= http.StatusMultipleChoices && code <= http.StatusTemporaryRedirect | |||||
} | |||||
// HTTPError asserts that a specified handler returns an error status code. | |||||
// | |||||
// assert.HTTPError(t, myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}} | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func HTTPError(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool { | |||||
code := httpCode(handler, method, url, values) | |||||
if code == -1 { | |||||
return false | |||||
} | |||||
return code >= http.StatusBadRequest | |||||
} | |||||
// HTTPBody is a helper that returns HTTP body of the response. It returns | |||||
// empty string if building a new request fails. | |||||
func HTTPBody(handler http.HandlerFunc, method, url string, values url.Values) string { | |||||
w := httptest.NewRecorder() | |||||
req, err := http.NewRequest(method, url+"?"+values.Encode(), nil) | |||||
if err != nil { | |||||
return "" | |||||
} | |||||
handler(w, req) | |||||
return w.Body.String() | |||||
} | |||||
// HTTPBodyContains asserts that a specified handler returns a | |||||
// body that contains a string. | |||||
// | |||||
// assert.HTTPBodyContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func HTTPBodyContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool { | |||||
body := HTTPBody(handler, method, url, values) | |||||
contains := strings.Contains(body, fmt.Sprint(str)) | |||||
if !contains { | |||||
Fail(t, fmt.Sprintf("Expected response body for \"%s\" to contain \"%s\" but found \"%s\"", url+"?"+values.Encode(), str, body)) | |||||
} | |||||
return contains | |||||
} | |||||
// HTTPBodyNotContains asserts that a specified handler returns a | |||||
// body that does not contain a string. | |||||
// | |||||
// assert.HTTPBodyNotContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky") | |||||
// | |||||
// Returns whether the assertion was successful (true) or not (false). | |||||
func HTTPBodyNotContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool { | |||||
body := HTTPBody(handler, method, url, values) | |||||
contains := strings.Contains(body, fmt.Sprint(str)) | |||||
if contains { | |||||
Fail(t, fmt.Sprintf("Expected response body for \"%s\" to NOT contain \"%s\" but found \"%s\"", url+"?"+values.Encode(), str, body)) | |||||
} | |||||
return !contains | |||||
} |
@@ -51,6 +51,12 @@ | |||||
"revisionTime": "2016-11-07T15:06:50Z" | "revisionTime": "2016-11-07T15:06:50Z" | ||||
}, | }, | ||||
{ | { | ||||
"checksumSHA1": "Lf3uUXTkKK5DJ37BxQvxO1Fq+K8=", | |||||
"path": "github.com/davecgh/go-spew/spew", | |||||
"revision": "976c720a22c8eb4eb6a0b4348ad85ad12491a506", | |||||
"revisionTime": "2016-09-25T22:06:09Z" | |||||
}, | |||||
{ | |||||
"checksumSHA1": "qM/kf31cT2cxjtHxdzbu8q8jPq0=", | "checksumSHA1": "qM/kf31cT2cxjtHxdzbu8q8jPq0=", | ||||
"path": "github.com/go-macaron/binding", | "path": "github.com/go-macaron/binding", | ||||
"revision": "9440f336b443056c90d7d448a0a55ad8c7599880", | "revision": "9440f336b443056c90d7d448a0a55ad8c7599880", | ||||
@@ -249,6 +255,12 @@ | |||||
"revisionTime": "2016-07-24T20:39:20Z" | "revisionTime": "2016-07-24T20:39:20Z" | ||||
}, | }, | ||||
{ | { | ||||
"checksumSHA1": "zKKp5SZ3d3ycKe4EKMNT0BqAWBw=", | |||||
"path": "github.com/pmezard/go-difflib/difflib", | |||||
"revision": "976c720a22c8eb4eb6a0b4348ad85ad12491a506", | |||||
"revisionTime": "2016-09-25T22:06:09Z" | |||||
}, | |||||
{ | |||||
"checksumSHA1": "c7jHQZk5ZEsFR9EXsWJXkszPBZA=", | "checksumSHA1": "c7jHQZk5ZEsFR9EXsWJXkszPBZA=", | ||||
"path": "github.com/russross/blackfriday", | "path": "github.com/russross/blackfriday", | ||||
"revision": "5f33e7b7878355cd2b7e6b8eefc48a5472c69f70", | "revision": "5f33e7b7878355cd2b7e6b8eefc48a5472c69f70", | ||||
@@ -309,6 +321,12 @@ | |||||
"revisionTime": "2016-11-03T17:15:00Z" | "revisionTime": "2016-11-03T17:15:00Z" | ||||
}, | }, | ||||
{ | { | ||||
"checksumSHA1": "Q2V7Zs3diLmLfmfbiuLpSxETSuY=", | |||||
"path": "github.com/stretchr/testify/assert", | |||||
"revision": "976c720a22c8eb4eb6a0b4348ad85ad12491a506", | |||||
"revisionTime": "2016-09-25T22:06:09Z" | |||||
}, | |||||
{ | |||||
"checksumSHA1": "ToTZYDqlvtuFsetAq5FeCwUxp0E=", | "checksumSHA1": "ToTZYDqlvtuFsetAq5FeCwUxp0E=", | ||||
"path": "github.com/urfave/cli", | "path": "github.com/urfave/cli", | ||||
"revision": "d86a009f5e13f83df65d0d6cee9a2e3f1445f0da", | "revision": "d86a009f5e13f83df65d0d6cee9a2e3f1445f0da", | ||||