Start to add tests for modules/base/tooltags/v1.2.0-rc1
@@ -16,6 +16,7 @@ import ( | |||
"html/template" | |||
"math" | |||
"net/http" | |||
"strconv" | |||
"strings" | |||
"time" | |||
"unicode" | |||
@@ -23,11 +24,9 @@ import ( | |||
"github.com/Unknwon/com" | |||
"github.com/Unknwon/i18n" | |||
"github.com/gogits/chardet" | |||
"github.com/go-gitea/gitea/modules/log" | |||
"github.com/go-gitea/gitea/modules/setting" | |||
"github.com/gogits/chardet" | |||
) | |||
// EncodeMD5 encodes string to md5 hex value. | |||
@@ -44,11 +43,10 @@ func EncodeSha1(str string) string { | |||
return hex.EncodeToString(h.Sum(nil)) | |||
} | |||
// ShortSha is basically just truncating. | |||
// It is DEPRECATED and will be removed in the future. | |||
func ShortSha(sha1 string) string { | |||
if len(sha1) > 10 { | |||
return sha1[:10] | |||
} | |||
return sha1 | |||
return TruncateString(sha1, 10) | |||
} | |||
func DetectEncoding(content []byte) (string, error) { | |||
@@ -198,30 +196,24 @@ func CreateTimeLimitCode(data string, minutes int, startInf interface{}) string | |||
// HashEmail hashes email address to MD5 string. | |||
// https://en.gravatar.com/site/implement/hash/ | |||
func HashEmail(email string) string { | |||
email = strings.ToLower(strings.TrimSpace(email)) | |||
h := md5.New() | |||
h.Write([]byte(email)) | |||
return hex.EncodeToString(h.Sum(nil)) | |||
return EncodeMD5(strings.ToLower(strings.TrimSpace(email))) | |||
} | |||
// AvatarLink returns relative avatar link to the site domain by given email, | |||
// which includes app sub-url as prefix. However, it is possible | |||
// to return full URL if user enables Gravatar-like service. | |||
func AvatarLink(email string) (url string) { | |||
func AvatarLink(email string) string { | |||
if setting.EnableFederatedAvatar && setting.LibravatarService != nil { | |||
var err error | |||
url, err = setting.LibravatarService.FromEmail(email) | |||
if err != nil { | |||
log.Error(1, "LibravatarService.FromEmail: %v", err) | |||
} | |||
} | |||
if len(url) == 0 && !setting.DisableGravatar { | |||
url = setting.GravatarSource + HashEmail(email) | |||
// TODO: This doesn't check any error. AvatarLink should return (string, error) | |||
url, _ := setting.LibravatarService.FromEmail(email) | |||
return url | |||
} | |||
if len(url) == 0 { | |||
url = setting.AppSubUrl + "/img/avatar_default.png" | |||
if !setting.DisableGravatar { | |||
return setting.GravatarSource + HashEmail(email) | |||
} | |||
return url | |||
return setting.AppSubUrl + "/img/avatar_default.png" | |||
} | |||
// Seconds-based time units | |||
@@ -470,7 +462,10 @@ func Subtract(left interface{}, right interface{}) interface{} { | |||
// EllipsisString returns a truncated short string, | |||
// it appends '...' in the end of the length of string is too large. | |||
func EllipsisString(str string, length int) string { | |||
if len(str) < length { | |||
if length <= 3 { | |||
return "..." | |||
} | |||
if len(str) <= length { | |||
return str | |||
} | |||
return str[:length-3] + "..." | |||
@@ -498,7 +493,7 @@ func StringsToInt64s(strs []string) []int64 { | |||
func Int64sToStrings(ints []int64) []string { | |||
strs := make([]string, len(ints)) | |||
for i := range ints { | |||
strs[i] = com.ToStr(ints[i]) | |||
strs[i] = strconv.FormatInt(ints[i], 10) | |||
} | |||
return strs | |||
} | |||
@@ -0,0 +1,185 @@ | |||
package base | |||
import ( | |||
"testing" | |||
"github.com/go-gitea/gitea/modules/setting" | |||
"github.com/stretchr/testify/assert" | |||
"strk.kbt.io/projects/go/libravatar" | |||
) | |||
func TestEncodeMD5(t *testing.T) { | |||
assert.Equal(t, | |||
"3858f62230ac3c915f300c664312c63f", | |||
EncodeMD5("foobar"), | |||
) | |||
} | |||
func TestEncodeSha1(t *testing.T) { | |||
assert.Equal(t, | |||
"8843d7f92416211de9ebb963ff4ce28125932878", | |||
EncodeSha1("foobar"), | |||
) | |||
} | |||
func TestShortSha(t *testing.T) { | |||
assert.Equal(t, "veryverylo", ShortSha("veryverylong")) | |||
} | |||
// TODO: Test DetectEncoding() | |||
func TestBasicAuthDecode(t *testing.T) { | |||
_, _, err := BasicAuthDecode("?") | |||
assert.Equal(t, "illegal base64 data at input byte 0", err.Error()) | |||
user, pass, err := BasicAuthDecode("Zm9vOmJhcg==") | |||
assert.NoError(t, err) | |||
assert.Equal(t, "foo", user) | |||
assert.Equal(t, "bar", pass) | |||
} | |||
func TestBasicAuthEncode(t *testing.T) { | |||
assert.Equal(t, "Zm9vOmJhcg==", BasicAuthEncode("foo", "bar")) | |||
} | |||
func TestGetRandomString(t *testing.T) { | |||
assert.Len(t, GetRandomString(4), 4) | |||
} | |||
// TODO: Test PBKDF2() | |||
// TODO: Test VerifyTimeLimitCode() | |||
// TODO: Test CreateTimeLimitCode() | |||
func TestHashEmail(t *testing.T) { | |||
assert.Equal(t, | |||
"d41d8cd98f00b204e9800998ecf8427e", | |||
HashEmail(""), | |||
) | |||
assert.Equal(t, | |||
"353cbad9b58e69c96154ad99f92bedc7", | |||
HashEmail("gitea@example.com"), | |||
) | |||
} | |||
func TestAvatarLink(t *testing.T) { | |||
setting.EnableFederatedAvatar = false | |||
setting.LibravatarService = nil | |||
setting.DisableGravatar = true | |||
assert.Equal(t, "/img/avatar_default.png", AvatarLink("")) | |||
setting.DisableGravatar = false | |||
assert.Equal(t, | |||
"353cbad9b58e69c96154ad99f92bedc7", | |||
AvatarLink("gitea@example.com"), | |||
) | |||
setting.EnableFederatedAvatar = true | |||
assert.Equal(t, | |||
"353cbad9b58e69c96154ad99f92bedc7", | |||
AvatarLink("gitea@example.com"), | |||
) | |||
setting.LibravatarService = libravatar.New() | |||
assert.Equal(t, | |||
"http://cdn.libravatar.org/avatar/353cbad9b58e69c96154ad99f92bedc7", | |||
AvatarLink("gitea@example.com"), | |||
) | |||
} | |||
// TODO: computeTimeDiff() | |||
// TODO: TimeSincePro() | |||
// TODO: timeSince() | |||
// TODO: RawTimeSince() | |||
// TODO: TimeSince() | |||
func TestFileSize(t *testing.T) { | |||
var size int64 | |||
size = 512 | |||
assert.Equal(t, "512B", FileSize(size)) | |||
size = size * 1024 | |||
assert.Equal(t, "512KB", FileSize(size)) | |||
size = size * 1024 | |||
assert.Equal(t, "512MB", FileSize(size)) | |||
size = size * 1024 | |||
assert.Equal(t, "512GB", FileSize(size)) | |||
size = size * 1024 | |||
assert.Equal(t, "512TB", FileSize(size)) | |||
size = size * 1024 | |||
assert.Equal(t, "512PB", FileSize(size)) | |||
//size = size * 1024 TODO: Fix bug for EB | |||
//assert.Equal(t, "512EB", FileSize(size)) | |||
} | |||
// TODO: Subtract() | |||
func TestEllipsisString(t *testing.T) { | |||
assert.Equal(t, "...", EllipsisString("foobar", 0)) | |||
assert.Equal(t, "...", EllipsisString("foobar", 1)) | |||
assert.Equal(t, "...", EllipsisString("foobar", 2)) | |||
assert.Equal(t, "...", EllipsisString("foobar", 3)) | |||
assert.Equal(t, "f...", EllipsisString("foobar", 4)) | |||
assert.Equal(t, "fo...", EllipsisString("foobar", 5)) | |||
assert.Equal(t, "foobar", EllipsisString("foobar", 6)) | |||
assert.Equal(t, "foobar", EllipsisString("foobar", 10)) | |||
} | |||
func TestTruncateString(t *testing.T) { | |||
assert.Equal(t, "", TruncateString("foobar", 0)) | |||
assert.Equal(t, "f", TruncateString("foobar", 1)) | |||
assert.Equal(t, "fo", TruncateString("foobar", 2)) | |||
assert.Equal(t, "foo", TruncateString("foobar", 3)) | |||
assert.Equal(t, "foob", TruncateString("foobar", 4)) | |||
assert.Equal(t, "fooba", TruncateString("foobar", 5)) | |||
assert.Equal(t, "foobar", TruncateString("foobar", 6)) | |||
assert.Equal(t, "foobar", TruncateString("foobar", 7)) | |||
} | |||
func TestStringsToInt64s(t *testing.T) { | |||
assert.Equal(t, []int64{}, StringsToInt64s([]string{})) | |||
assert.Equal(t, | |||
[]int64{1, 4, 16, 64, 256}, | |||
StringsToInt64s([]string{"1", "4", "16", "64", "256"}), | |||
) | |||
// TODO: StringsToInt64s should return ([]int64, error) | |||
assert.Equal(t, []int64{-1, 0, 0}, StringsToInt64s([]string{"-1", "a", "$"})) | |||
} | |||
func TestInt64sToStrings(t *testing.T) { | |||
assert.Equal(t, []string{}, Int64sToStrings([]int64{})) | |||
assert.Equal(t, | |||
[]string{"1", "4", "16", "64", "256"}, | |||
Int64sToStrings([]int64{1, 4, 16, 64, 256}), | |||
) | |||
} | |||
func TestInt64sToMap(t *testing.T) { | |||
assert.Equal(t, map[int64]bool{}, Int64sToMap([]int64{})) | |||
assert.Equal(t, | |||
map[int64]bool{1: true, 4: true, 16: true}, | |||
Int64sToMap([]int64{1, 4, 16}), | |||
) | |||
} | |||
func TestIsLetter(t *testing.T) { | |||
assert.True(t, IsLetter('a')) | |||
assert.True(t, IsLetter('e')) | |||
assert.True(t, IsLetter('q')) | |||
assert.True(t, IsLetter('z')) | |||
assert.True(t, IsLetter('A')) | |||
assert.True(t, IsLetter('E')) | |||
assert.True(t, IsLetter('Q')) | |||
assert.True(t, IsLetter('Z')) | |||
assert.True(t, IsLetter('_')) | |||
assert.False(t, IsLetter('-')) | |||
assert.False(t, IsLetter('1')) | |||
assert.False(t, IsLetter('$')) | |||
} | |||
func TestIsTextFile(t *testing.T) { | |||
assert.True(t, IsTextFile([]byte{})) | |||
assert.True(t, IsTextFile([]byte("lorem ipsum"))) | |||
} | |||
// TODO: IsImageFile(), currently no idea how to test | |||
// TODO: IsPDFFile(), currently no idea how to test |
@@ -0,0 +1,15 @@ | |||
ISC License | |||
Copyright (c) 2012-2013 Dave Collins <dave@davec.name> | |||
Permission to use, copy, modify, and distribute this software for any | |||
purpose with or without fee is hereby granted, provided that the above | |||
copyright notice and this permission notice appear in all copies. | |||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
@@ -0,0 +1,152 @@ | |||
// Copyright (c) 2015 Dave Collins <dave@davec.name> | |||
// | |||
// Permission to use, copy, modify, and distribute this software for any | |||
// purpose with or without fee is hereby granted, provided that the above | |||
// copyright notice and this permission notice appear in all copies. | |||
// | |||
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||
// NOTE: Due to the following build constraints, this file will only be compiled | |||
// when the code is not running on Google App Engine, compiled by GopherJS, and | |||
// "-tags safe" is not added to the go build command line. The "disableunsafe" | |||
// tag is deprecated and thus should not be used. | |||
// +build !js,!appengine,!safe,!disableunsafe | |||
package spew | |||
import ( | |||
"reflect" | |||
"unsafe" | |||
) | |||
const ( | |||
// UnsafeDisabled is a build-time constant which specifies whether or | |||
// not access to the unsafe package is available. | |||
UnsafeDisabled = false | |||
// ptrSize is the size of a pointer on the current arch. | |||
ptrSize = unsafe.Sizeof((*byte)(nil)) | |||
) | |||
var ( | |||
// offsetPtr, offsetScalar, and offsetFlag are the offsets for the | |||
// internal reflect.Value fields. These values are valid before golang | |||
// commit ecccf07e7f9d which changed the format. The are also valid | |||
// after commit 82f48826c6c7 which changed the format again to mirror | |||
// the original format. Code in the init function updates these offsets | |||
// as necessary. | |||
offsetPtr = uintptr(ptrSize) | |||
offsetScalar = uintptr(0) | |||
offsetFlag = uintptr(ptrSize * 2) | |||
// flagKindWidth and flagKindShift indicate various bits that the | |||
// reflect package uses internally to track kind information. | |||
// | |||
// flagRO indicates whether or not the value field of a reflect.Value is | |||
// read-only. | |||
// | |||
// flagIndir indicates whether the value field of a reflect.Value is | |||
// the actual data or a pointer to the data. | |||
// | |||
// These values are valid before golang commit 90a7c3c86944 which | |||
// changed their positions. Code in the init function updates these | |||
// flags as necessary. | |||
flagKindWidth = uintptr(5) | |||
flagKindShift = uintptr(flagKindWidth - 1) | |||
flagRO = uintptr(1 << 0) | |||
flagIndir = uintptr(1 << 1) | |||
) | |||
func init() { | |||
// Older versions of reflect.Value stored small integers directly in the | |||
// ptr field (which is named val in the older versions). Versions | |||
// between commits ecccf07e7f9d and 82f48826c6c7 added a new field named | |||
// scalar for this purpose which unfortunately came before the flag | |||
// field, so the offset of the flag field is different for those | |||
// versions. | |||
// | |||
// This code constructs a new reflect.Value from a known small integer | |||
// and checks if the size of the reflect.Value struct indicates it has | |||
// the scalar field. When it does, the offsets are updated accordingly. | |||
vv := reflect.ValueOf(0xf00) | |||
if unsafe.Sizeof(vv) == (ptrSize * 4) { | |||
offsetScalar = ptrSize * 2 | |||
offsetFlag = ptrSize * 3 | |||
} | |||
// Commit 90a7c3c86944 changed the flag positions such that the low | |||
// order bits are the kind. This code extracts the kind from the flags | |||
// field and ensures it's the correct type. When it's not, the flag | |||
// order has been changed to the newer format, so the flags are updated | |||
// accordingly. | |||
upf := unsafe.Pointer(uintptr(unsafe.Pointer(&vv)) + offsetFlag) | |||
upfv := *(*uintptr)(upf) | |||
flagKindMask := uintptr((1<<flagKindWidth - 1) << flagKindShift) | |||
if (upfv&flagKindMask)>>flagKindShift != uintptr(reflect.Int) { | |||
flagKindShift = 0 | |||
flagRO = 1 << 5 | |||
flagIndir = 1 << 6 | |||
// Commit adf9b30e5594 modified the flags to separate the | |||
// flagRO flag into two bits which specifies whether or not the | |||
// field is embedded. This causes flagIndir to move over a bit | |||
// and means that flagRO is the combination of either of the | |||
// original flagRO bit and the new bit. | |||
// | |||
// This code detects the change by extracting what used to be | |||
// the indirect bit to ensure it's set. When it's not, the flag | |||
// order has been changed to the newer format, so the flags are | |||
// updated accordingly. | |||
if upfv&flagIndir == 0 { | |||
flagRO = 3 << 5 | |||
flagIndir = 1 << 7 | |||
} | |||
} | |||
} | |||
// unsafeReflectValue converts the passed reflect.Value into a one that bypasses | |||
// the typical safety restrictions preventing access to unaddressable and | |||
// unexported data. It works by digging the raw pointer to the underlying | |||
// value out of the protected value and generating a new unprotected (unsafe) | |||
// reflect.Value to it. | |||
// | |||
// This allows us to check for implementations of the Stringer and error | |||
// interfaces to be used for pretty printing ordinarily unaddressable and | |||
// inaccessible values such as unexported struct fields. | |||
func unsafeReflectValue(v reflect.Value) (rv reflect.Value) { | |||
indirects := 1 | |||
vt := v.Type() | |||
upv := unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetPtr) | |||
rvf := *(*uintptr)(unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetFlag)) | |||
if rvf&flagIndir != 0 { | |||
vt = reflect.PtrTo(v.Type()) | |||
indirects++ | |||
} else if offsetScalar != 0 { | |||
// The value is in the scalar field when it's not one of the | |||
// reference types. | |||
switch vt.Kind() { | |||
case reflect.Uintptr: | |||
case reflect.Chan: | |||
case reflect.Func: | |||
case reflect.Map: | |||
case reflect.Ptr: | |||
case reflect.UnsafePointer: | |||
default: | |||
upv = unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + | |||
offsetScalar) | |||
} | |||
} | |||
pv := reflect.NewAt(vt, upv) | |||
rv = pv | |||
for i := 0; i < indirects; i++ { | |||
rv = rv.Elem() | |||
} | |||
return rv | |||
} |
@@ -0,0 +1,38 @@ | |||
// Copyright (c) 2015 Dave Collins <dave@davec.name> | |||
// | |||
// Permission to use, copy, modify, and distribute this software for any | |||
// purpose with or without fee is hereby granted, provided that the above | |||
// copyright notice and this permission notice appear in all copies. | |||
// | |||
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||
// NOTE: Due to the following build constraints, this file will only be compiled | |||
// when the code is running on Google App Engine, compiled by GopherJS, or | |||
// "-tags safe" is added to the go build command line. The "disableunsafe" | |||
// tag is deprecated and thus should not be used. | |||
// +build js appengine safe disableunsafe | |||
package spew | |||
import "reflect" | |||
const ( | |||
// UnsafeDisabled is a build-time constant which specifies whether or | |||
// not access to the unsafe package is available. | |||
UnsafeDisabled = true | |||
) | |||
// unsafeReflectValue typically converts the passed reflect.Value into a one | |||
// that bypasses the typical safety restrictions preventing access to | |||
// unaddressable and unexported data. However, doing this relies on access to | |||
// the unsafe package. This is a stub version which simply returns the passed | |||
// reflect.Value when the unsafe package is not available. | |||
func unsafeReflectValue(v reflect.Value) reflect.Value { | |||
return v | |||
} |
@@ -0,0 +1,341 @@ | |||
/* | |||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||
* | |||
* Permission to use, copy, modify, and distribute this software for any | |||
* purpose with or without fee is hereby granted, provided that the above | |||
* copyright notice and this permission notice appear in all copies. | |||
* | |||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||
*/ | |||
package spew | |||
import ( | |||
"bytes" | |||
"fmt" | |||
"io" | |||
"reflect" | |||
"sort" | |||
"strconv" | |||
) | |||
// Some constants in the form of bytes to avoid string overhead. This mirrors | |||
// the technique used in the fmt package. | |||
var ( | |||
panicBytes = []byte("(PANIC=") | |||
plusBytes = []byte("+") | |||
iBytes = []byte("i") | |||
trueBytes = []byte("true") | |||
falseBytes = []byte("false") | |||
interfaceBytes = []byte("(interface {})") | |||
commaNewlineBytes = []byte(",\n") | |||
newlineBytes = []byte("\n") | |||
openBraceBytes = []byte("{") | |||
openBraceNewlineBytes = []byte("{\n") | |||
closeBraceBytes = []byte("}") | |||
asteriskBytes = []byte("*") | |||
colonBytes = []byte(":") | |||
colonSpaceBytes = []byte(": ") | |||
openParenBytes = []byte("(") | |||
closeParenBytes = []byte(")") | |||
spaceBytes = []byte(" ") | |||
pointerChainBytes = []byte("->") | |||
nilAngleBytes = []byte("<nil>") | |||
maxNewlineBytes = []byte("<max depth reached>\n") | |||
maxShortBytes = []byte("<max>") | |||
circularBytes = []byte("<already shown>") | |||
circularShortBytes = []byte("<shown>") | |||
invalidAngleBytes = []byte("<invalid>") | |||
openBracketBytes = []byte("[") | |||
closeBracketBytes = []byte("]") | |||
percentBytes = []byte("%") | |||
precisionBytes = []byte(".") | |||
openAngleBytes = []byte("<") | |||
closeAngleBytes = []byte(">") | |||
openMapBytes = []byte("map[") | |||
closeMapBytes = []byte("]") | |||
lenEqualsBytes = []byte("len=") | |||
capEqualsBytes = []byte("cap=") | |||
) | |||
// hexDigits is used to map a decimal value to a hex digit. | |||
var hexDigits = "0123456789abcdef" | |||
// catchPanic handles any panics that might occur during the handleMethods | |||
// calls. | |||
func catchPanic(w io.Writer, v reflect.Value) { | |||
if err := recover(); err != nil { | |||
w.Write(panicBytes) | |||
fmt.Fprintf(w, "%v", err) | |||
w.Write(closeParenBytes) | |||
} | |||
} | |||
// handleMethods attempts to call the Error and String methods on the underlying | |||
// type the passed reflect.Value represents and outputes the result to Writer w. | |||
// | |||
// It handles panics in any called methods by catching and displaying the error | |||
// as the formatted value. | |||
func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) { | |||
// We need an interface to check if the type implements the error or | |||
// Stringer interface. However, the reflect package won't give us an | |||
// interface on certain things like unexported struct fields in order | |||
// to enforce visibility rules. We use unsafe, when it's available, | |||
// to bypass these restrictions since this package does not mutate the | |||
// values. | |||
if !v.CanInterface() { | |||
if UnsafeDisabled { | |||
return false | |||
} | |||
v = unsafeReflectValue(v) | |||
} | |||
// Choose whether or not to do error and Stringer interface lookups against | |||
// the base type or a pointer to the base type depending on settings. | |||
// Technically calling one of these methods with a pointer receiver can | |||
// mutate the value, however, types which choose to satisify an error or | |||
// Stringer interface with a pointer receiver should not be mutating their | |||
// state inside these interface methods. | |||
if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() { | |||
v = unsafeReflectValue(v) | |||
} | |||
if v.CanAddr() { | |||
v = v.Addr() | |||
} | |||
// Is it an error or Stringer? | |||
switch iface := v.Interface().(type) { | |||
case error: | |||
defer catchPanic(w, v) | |||
if cs.ContinueOnMethod { | |||
w.Write(openParenBytes) | |||
w.Write([]byte(iface.Error())) | |||
w.Write(closeParenBytes) | |||
w.Write(spaceBytes) | |||
return false | |||
} | |||
w.Write([]byte(iface.Error())) | |||
return true | |||
case fmt.Stringer: | |||
defer catchPanic(w, v) | |||
if cs.ContinueOnMethod { | |||
w.Write(openParenBytes) | |||
w.Write([]byte(iface.String())) | |||
w.Write(closeParenBytes) | |||
w.Write(spaceBytes) | |||
return false | |||
} | |||
w.Write([]byte(iface.String())) | |||
return true | |||
} | |||
return false | |||
} | |||
// printBool outputs a boolean value as true or false to Writer w. | |||
func printBool(w io.Writer, val bool) { | |||
if val { | |||
w.Write(trueBytes) | |||
} else { | |||
w.Write(falseBytes) | |||
} | |||
} | |||
// printInt outputs a signed integer value to Writer w. | |||
func printInt(w io.Writer, val int64, base int) { | |||
w.Write([]byte(strconv.FormatInt(val, base))) | |||
} | |||
// printUint outputs an unsigned integer value to Writer w. | |||
func printUint(w io.Writer, val uint64, base int) { | |||
w.Write([]byte(strconv.FormatUint(val, base))) | |||
} | |||
// printFloat outputs a floating point value using the specified precision, | |||
// which is expected to be 32 or 64bit, to Writer w. | |||
func printFloat(w io.Writer, val float64, precision int) { | |||
w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision))) | |||
} | |||
// printComplex outputs a complex value using the specified float precision | |||
// for the real and imaginary parts to Writer w. | |||
func printComplex(w io.Writer, c complex128, floatPrecision int) { | |||
r := real(c) | |||
w.Write(openParenBytes) | |||
w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision))) | |||
i := imag(c) | |||
if i >= 0 { | |||
w.Write(plusBytes) | |||
} | |||
w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision))) | |||
w.Write(iBytes) | |||
w.Write(closeParenBytes) | |||
} | |||
// printHexPtr outputs a uintptr formatted as hexidecimal with a leading '0x' | |||
// prefix to Writer w. | |||
func printHexPtr(w io.Writer, p uintptr) { | |||
// Null pointer. | |||
num := uint64(p) | |||
if num == 0 { | |||
w.Write(nilAngleBytes) | |||
return | |||
} | |||
// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix | |||
buf := make([]byte, 18) | |||
// It's simpler to construct the hex string right to left. | |||
base := uint64(16) | |||
i := len(buf) - 1 | |||
for num >= base { | |||
buf[i] = hexDigits[num%base] | |||
num /= base | |||
i-- | |||
} | |||
buf[i] = hexDigits[num] | |||
// Add '0x' prefix. | |||
i-- | |||
buf[i] = 'x' | |||
i-- | |||
buf[i] = '0' | |||
// Strip unused leading bytes. | |||
buf = buf[i:] | |||
w.Write(buf) | |||
} | |||
// valuesSorter implements sort.Interface to allow a slice of reflect.Value | |||
// elements to be sorted. | |||
type valuesSorter struct { | |||
values []reflect.Value | |||
strings []string // either nil or same len and values | |||
cs *ConfigState | |||
} | |||
// newValuesSorter initializes a valuesSorter instance, which holds a set of | |||
// surrogate keys on which the data should be sorted. It uses flags in | |||
// ConfigState to decide if and how to populate those surrogate keys. | |||
func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface { | |||
vs := &valuesSorter{values: values, cs: cs} | |||
if canSortSimply(vs.values[0].Kind()) { | |||
return vs | |||
} | |||
if !cs.DisableMethods { | |||
vs.strings = make([]string, len(values)) | |||
for i := range vs.values { | |||
b := bytes.Buffer{} | |||
if !handleMethods(cs, &b, vs.values[i]) { | |||
vs.strings = nil | |||
break | |||
} | |||
vs.strings[i] = b.String() | |||
} | |||
} | |||
if vs.strings == nil && cs.SpewKeys { | |||
vs.strings = make([]string, len(values)) | |||
for i := range vs.values { | |||
vs.strings[i] = Sprintf("%#v", vs.values[i].Interface()) | |||
} | |||
} | |||
return vs | |||
} | |||
// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted | |||
// directly, or whether it should be considered for sorting by surrogate keys | |||
// (if the ConfigState allows it). | |||
func canSortSimply(kind reflect.Kind) bool { | |||
// This switch parallels valueSortLess, except for the default case. | |||
switch kind { | |||
case reflect.Bool: | |||
return true | |||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: | |||
return true | |||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: | |||
return true | |||
case reflect.Float32, reflect.Float64: | |||
return true | |||
case reflect.String: | |||
return true | |||
case reflect.Uintptr: | |||
return true | |||
case reflect.Array: | |||
return true | |||
} | |||
return false | |||
} | |||
// Len returns the number of values in the slice. It is part of the | |||
// sort.Interface implementation. | |||
func (s *valuesSorter) Len() int { | |||
return len(s.values) | |||
} | |||
// Swap swaps the values at the passed indices. It is part of the | |||
// sort.Interface implementation. | |||
func (s *valuesSorter) Swap(i, j int) { | |||
s.values[i], s.values[j] = s.values[j], s.values[i] | |||
if s.strings != nil { | |||
s.strings[i], s.strings[j] = s.strings[j], s.strings[i] | |||
} | |||
} | |||
// valueSortLess returns whether the first value should sort before the second | |||
// value. It is used by valueSorter.Less as part of the sort.Interface | |||
// implementation. | |||
func valueSortLess(a, b reflect.Value) bool { | |||
switch a.Kind() { | |||
case reflect.Bool: | |||
return !a.Bool() && b.Bool() | |||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: | |||
return a.Int() < b.Int() | |||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: | |||
return a.Uint() < b.Uint() | |||
case reflect.Float32, reflect.Float64: | |||
return a.Float() < b.Float() | |||
case reflect.String: | |||
return a.String() < b.String() | |||
case reflect.Uintptr: | |||
return a.Uint() < b.Uint() | |||
case reflect.Array: | |||
// Compare the contents of both arrays. | |||
l := a.Len() | |||
for i := 0; i < l; i++ { | |||
av := a.Index(i) | |||
bv := b.Index(i) | |||
if av.Interface() == bv.Interface() { | |||
continue | |||
} | |||
return valueSortLess(av, bv) | |||
} | |||
} | |||
return a.String() < b.String() | |||
} | |||
// Less returns whether the value at index i should sort before the | |||
// value at index j. It is part of the sort.Interface implementation. | |||
func (s *valuesSorter) Less(i, j int) bool { | |||
if s.strings == nil { | |||
return valueSortLess(s.values[i], s.values[j]) | |||
} | |||
return s.strings[i] < s.strings[j] | |||
} | |||
// sortValues is a sort function that handles both native types and any type that | |||
// can be converted to error or Stringer. Other inputs are sorted according to | |||
// their Value.String() value to ensure display stability. | |||
func sortValues(values []reflect.Value, cs *ConfigState) { | |||
if len(values) == 0 { | |||
return | |||
} | |||
sort.Sort(newValuesSorter(values, cs)) | |||
} |
@@ -0,0 +1,297 @@ | |||
/* | |||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||
* | |||
* Permission to use, copy, modify, and distribute this software for any | |||
* purpose with or without fee is hereby granted, provided that the above | |||
* copyright notice and this permission notice appear in all copies. | |||
* | |||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||
*/ | |||
package spew | |||
import ( | |||
"bytes" | |||
"fmt" | |||
"io" | |||
"os" | |||
) | |||
// ConfigState houses the configuration options used by spew to format and | |||
// display values. There is a global instance, Config, that is used to control | |||
// all top-level Formatter and Dump functionality. Each ConfigState instance | |||
// provides methods equivalent to the top-level functions. | |||
// | |||
// The zero value for ConfigState provides no indentation. You would typically | |||
// want to set it to a space or a tab. | |||
// | |||
// Alternatively, you can use NewDefaultConfig to get a ConfigState instance | |||
// with default settings. See the documentation of NewDefaultConfig for default | |||
// values. | |||
type ConfigState struct { | |||
// Indent specifies the string to use for each indentation level. The | |||
// global config instance that all top-level functions use set this to a | |||
// single space by default. If you would like more indentation, you might | |||
// set this to a tab with "\t" or perhaps two spaces with " ". | |||
Indent string | |||
// MaxDepth controls the maximum number of levels to descend into nested | |||
// data structures. The default, 0, means there is no limit. | |||
// | |||
// NOTE: Circular data structures are properly detected, so it is not | |||
// necessary to set this value unless you specifically want to limit deeply | |||
// nested data structures. | |||
MaxDepth int | |||
// DisableMethods specifies whether or not error and Stringer interfaces are | |||
// invoked for types that implement them. | |||
DisableMethods bool | |||
// DisablePointerMethods specifies whether or not to check for and invoke | |||
// error and Stringer interfaces on types which only accept a pointer | |||
// receiver when the current type is not a pointer. | |||
// | |||
// NOTE: This might be an unsafe action since calling one of these methods | |||
// with a pointer receiver could technically mutate the value, however, | |||
// in practice, types which choose to satisify an error or Stringer | |||
// interface with a pointer receiver should not be mutating their state | |||
// inside these interface methods. As a result, this option relies on | |||
// access to the unsafe package, so it will not have any effect when | |||
// running in environments without access to the unsafe package such as | |||
// Google App Engine or with the "safe" build tag specified. | |||
DisablePointerMethods bool | |||
// ContinueOnMethod specifies whether or not recursion should continue once | |||
// a custom error or Stringer interface is invoked. The default, false, | |||
// means it will print the results of invoking the custom error or Stringer | |||
// interface and return immediately instead of continuing to recurse into | |||
// the internals of the data type. | |||
// | |||
// NOTE: This flag does not have any effect if method invocation is disabled | |||
// via the DisableMethods or DisablePointerMethods options. | |||
ContinueOnMethod bool | |||
// SortKeys specifies map keys should be sorted before being printed. Use | |||
// this to have a more deterministic, diffable output. Note that only | |||
// native types (bool, int, uint, floats, uintptr and string) and types | |||
// that support the error or Stringer interfaces (if methods are | |||
// enabled) are supported, with other types sorted according to the | |||
// reflect.Value.String() output which guarantees display stability. | |||
SortKeys bool | |||
// SpewKeys specifies that, as a last resort attempt, map keys should | |||
// be spewed to strings and sorted by those strings. This is only | |||
// considered if SortKeys is true. | |||
SpewKeys bool | |||
} | |||
// Config is the active configuration of the top-level functions. | |||
// The configuration can be changed by modifying the contents of spew.Config. | |||
var Config = ConfigState{Indent: " "} | |||
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were | |||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||
// the formatted string as a value that satisfies error. See NewFormatter | |||
// for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b)) | |||
func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) { | |||
return fmt.Errorf(format, c.convertArgs(a)...) | |||
} | |||
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were | |||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||
// the number of bytes written and any write error encountered. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b)) | |||
func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) { | |||
return fmt.Fprint(w, c.convertArgs(a)...) | |||
} | |||
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were | |||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||
// the number of bytes written and any write error encountered. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b)) | |||
func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) { | |||
return fmt.Fprintf(w, format, c.convertArgs(a)...) | |||
} | |||
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it | |||
// passed with a Formatter interface returned by c.NewFormatter. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b)) | |||
func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) { | |||
return fmt.Fprintln(w, c.convertArgs(a)...) | |||
} | |||
// Print is a wrapper for fmt.Print that treats each argument as if it were | |||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||
// the number of bytes written and any write error encountered. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Print(c.NewFormatter(a), c.NewFormatter(b)) | |||
func (c *ConfigState) Print(a ...interface{}) (n int, err error) { | |||
return fmt.Print(c.convertArgs(a)...) | |||
} | |||
// Printf is a wrapper for fmt.Printf that treats each argument as if it were | |||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||
// the number of bytes written and any write error encountered. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b)) | |||
func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) { | |||
return fmt.Printf(format, c.convertArgs(a)...) | |||
} | |||
// Println is a wrapper for fmt.Println that treats each argument as if it were | |||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||
// the number of bytes written and any write error encountered. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Println(c.NewFormatter(a), c.NewFormatter(b)) | |||
func (c *ConfigState) Println(a ...interface{}) (n int, err error) { | |||
return fmt.Println(c.convertArgs(a)...) | |||
} | |||
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were | |||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||
// the resulting string. See NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b)) | |||
func (c *ConfigState) Sprint(a ...interface{}) string { | |||
return fmt.Sprint(c.convertArgs(a)...) | |||
} | |||
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were | |||
// passed with a Formatter interface returned by c.NewFormatter. It returns | |||
// the resulting string. See NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b)) | |||
func (c *ConfigState) Sprintf(format string, a ...interface{}) string { | |||
return fmt.Sprintf(format, c.convertArgs(a)...) | |||
} | |||
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it | |||
// were passed with a Formatter interface returned by c.NewFormatter. It | |||
// returns the resulting string. See NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b)) | |||
func (c *ConfigState) Sprintln(a ...interface{}) string { | |||
return fmt.Sprintln(c.convertArgs(a)...) | |||
} | |||
/* | |||
NewFormatter returns a custom formatter that satisfies the fmt.Formatter | |||
interface. As a result, it integrates cleanly with standard fmt package | |||
printing functions. The formatter is useful for inline printing of smaller data | |||
types similar to the standard %v format specifier. | |||
The custom formatter only responds to the %v (most compact), %+v (adds pointer | |||
addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb | |||
combinations. Any other verbs such as %x and %q will be sent to the the | |||
standard fmt package for formatting. In addition, the custom formatter ignores | |||
the width and precision arguments (however they will still work on the format | |||
specifiers not handled by the custom formatter). | |||
Typically this function shouldn't be called directly. It is much easier to make | |||
use of the custom formatter by calling one of the convenience functions such as | |||
c.Printf, c.Println, or c.Printf. | |||
*/ | |||
func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter { | |||
return newFormatter(c, v) | |||
} | |||
// Fdump formats and displays the passed arguments to io.Writer w. It formats | |||
// exactly the same as Dump. | |||
func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) { | |||
fdump(c, w, a...) | |||
} | |||
/* | |||
Dump displays the passed parameters to standard out with newlines, customizable | |||
indentation, and additional debug information such as complete types and all | |||
pointer addresses used to indirect to the final value. It provides the | |||
following features over the built-in printing facilities provided by the fmt | |||
package: | |||
* Pointers are dereferenced and followed | |||
* Circular data structures are detected and handled properly | |||
* Custom Stringer/error interfaces are optionally invoked, including | |||
on unexported types | |||
* Custom types which only implement the Stringer/error interfaces via | |||
a pointer receiver are optionally invoked when passing non-pointer | |||
variables | |||
* Byte arrays and slices are dumped like the hexdump -C command which | |||
includes offsets, byte values in hex, and ASCII output | |||
The configuration options are controlled by modifying the public members | |||
of c. See ConfigState for options documentation. | |||
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to | |||
get the formatted result as a string. | |||
*/ | |||
func (c *ConfigState) Dump(a ...interface{}) { | |||
fdump(c, os.Stdout, a...) | |||
} | |||
// Sdump returns a string with the passed arguments formatted exactly the same | |||
// as Dump. | |||
func (c *ConfigState) Sdump(a ...interface{}) string { | |||
var buf bytes.Buffer | |||
fdump(c, &buf, a...) | |||
return buf.String() | |||
} | |||
// convertArgs accepts a slice of arguments and returns a slice of the same | |||
// length with each argument converted to a spew Formatter interface using | |||
// the ConfigState associated with s. | |||
func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) { | |||
formatters = make([]interface{}, len(args)) | |||
for index, arg := range args { | |||
formatters[index] = newFormatter(c, arg) | |||
} | |||
return formatters | |||
} | |||
// NewDefaultConfig returns a ConfigState with the following default settings. | |||
// | |||
// Indent: " " | |||
// MaxDepth: 0 | |||
// DisableMethods: false | |||
// DisablePointerMethods: false | |||
// ContinueOnMethod: false | |||
// SortKeys: false | |||
func NewDefaultConfig() *ConfigState { | |||
return &ConfigState{Indent: " "} | |||
} |
@@ -0,0 +1,202 @@ | |||
/* | |||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||
* | |||
* Permission to use, copy, modify, and distribute this software for any | |||
* purpose with or without fee is hereby granted, provided that the above | |||
* copyright notice and this permission notice appear in all copies. | |||
* | |||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||
*/ | |||
/* | |||
Package spew implements a deep pretty printer for Go data structures to aid in | |||
debugging. | |||
A quick overview of the additional features spew provides over the built-in | |||
printing facilities for Go data types are as follows: | |||
* Pointers are dereferenced and followed | |||
* Circular data structures are detected and handled properly | |||
* Custom Stringer/error interfaces are optionally invoked, including | |||
on unexported types | |||
* Custom types which only implement the Stringer/error interfaces via | |||
a pointer receiver are optionally invoked when passing non-pointer | |||
variables | |||
* Byte arrays and slices are dumped like the hexdump -C command which | |||
includes offsets, byte values in hex, and ASCII output (only when using | |||
Dump style) | |||
There are two different approaches spew allows for dumping Go data structures: | |||
* Dump style which prints with newlines, customizable indentation, | |||
and additional debug information such as types and all pointer addresses | |||
used to indirect to the final value | |||
* A custom Formatter interface that integrates cleanly with the standard fmt | |||
package and replaces %v, %+v, %#v, and %#+v to provide inline printing | |||
similar to the default %v while providing the additional functionality | |||
outlined above and passing unsupported format verbs such as %x and %q | |||
along to fmt | |||
Quick Start | |||
This section demonstrates how to quickly get started with spew. See the | |||
sections below for further details on formatting and configuration options. | |||
To dump a variable with full newlines, indentation, type, and pointer | |||
information use Dump, Fdump, or Sdump: | |||
spew.Dump(myVar1, myVar2, ...) | |||
spew.Fdump(someWriter, myVar1, myVar2, ...) | |||
str := spew.Sdump(myVar1, myVar2, ...) | |||
Alternatively, if you would prefer to use format strings with a compacted inline | |||
printing style, use the convenience wrappers Printf, Fprintf, etc with | |||
%v (most compact), %+v (adds pointer addresses), %#v (adds types), or | |||
%#+v (adds types and pointer addresses): | |||
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2) | |||
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) | |||
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2) | |||
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) | |||
Configuration Options | |||
Configuration of spew is handled by fields in the ConfigState type. For | |||
convenience, all of the top-level functions use a global state available | |||
via the spew.Config global. | |||
It is also possible to create a ConfigState instance that provides methods | |||
equivalent to the top-level functions. This allows concurrent configuration | |||
options. See the ConfigState documentation for more details. | |||
The following configuration options are available: | |||
* Indent | |||
String to use for each indentation level for Dump functions. | |||
It is a single space by default. A popular alternative is "\t". | |||
* MaxDepth | |||
Maximum number of levels to descend into nested data structures. | |||
There is no limit by default. | |||
* DisableMethods | |||
Disables invocation of error and Stringer interface methods. | |||
Method invocation is enabled by default. | |||
* DisablePointerMethods | |||
Disables invocation of error and Stringer interface methods on types | |||
which only accept pointer receivers from non-pointer variables. | |||
Pointer method invocation is enabled by default. | |||
* ContinueOnMethod | |||
Enables recursion into types after invoking error and Stringer interface | |||
methods. Recursion after method invocation is disabled by default. | |||
* SortKeys | |||
Specifies map keys should be sorted before being printed. Use | |||
this to have a more deterministic, diffable output. Note that | |||
only native types (bool, int, uint, floats, uintptr and string) | |||
and types which implement error or Stringer interfaces are | |||
supported with other types sorted according to the | |||
reflect.Value.String() output which guarantees display | |||
stability. Natural map order is used by default. | |||
* SpewKeys | |||
Specifies that, as a last resort attempt, map keys should be | |||
spewed to strings and sorted by those strings. This is only | |||
considered if SortKeys is true. | |||
Dump Usage | |||
Simply call spew.Dump with a list of variables you want to dump: | |||
spew.Dump(myVar1, myVar2, ...) | |||
You may also call spew.Fdump if you would prefer to output to an arbitrary | |||
io.Writer. For example, to dump to standard error: | |||
spew.Fdump(os.Stderr, myVar1, myVar2, ...) | |||
A third option is to call spew.Sdump to get the formatted output as a string: | |||
str := spew.Sdump(myVar1, myVar2, ...) | |||
Sample Dump Output | |||
See the Dump example for details on the setup of the types and variables being | |||
shown here. | |||
(main.Foo) { | |||
unexportedField: (*main.Bar)(0xf84002e210)({ | |||
flag: (main.Flag) flagTwo, | |||
data: (uintptr) <nil> | |||
}), | |||
ExportedField: (map[interface {}]interface {}) (len=1) { | |||
(string) (len=3) "one": (bool) true | |||
} | |||
} | |||
Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C | |||
command as shown. | |||
([]uint8) (len=32 cap=32) { | |||
00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... | | |||
00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0| | |||
00000020 31 32 |12| | |||
} | |||
Custom Formatter | |||
Spew provides a custom formatter that implements the fmt.Formatter interface | |||
so that it integrates cleanly with standard fmt package printing functions. The | |||
formatter is useful for inline printing of smaller data types similar to the | |||
standard %v format specifier. | |||
The custom formatter only responds to the %v (most compact), %+v (adds pointer | |||
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb | |||
combinations. Any other verbs such as %x and %q will be sent to the the | |||
standard fmt package for formatting. In addition, the custom formatter ignores | |||
the width and precision arguments (however they will still work on the format | |||
specifiers not handled by the custom formatter). | |||
Custom Formatter Usage | |||
The simplest way to make use of the spew custom formatter is to call one of the | |||
convenience functions such as spew.Printf, spew.Println, or spew.Printf. The | |||
functions have syntax you are most likely already familiar with: | |||
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2) | |||
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) | |||
spew.Println(myVar, myVar2) | |||
spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2) | |||
spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4) | |||
See the Index for the full list convenience functions. | |||
Sample Formatter Output | |||
Double pointer to a uint8: | |||
%v: <**>5 | |||
%+v: <**>(0xf8400420d0->0xf8400420c8)5 | |||
%#v: (**uint8)5 | |||
%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5 | |||
Pointer to circular struct with a uint8 field and a pointer to itself: | |||
%v: <*>{1 <*><shown>} | |||
%+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>} | |||
%#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>} | |||
%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>} | |||
See the Printf example for details on the setup of variables being shown | |||
here. | |||
Errors | |||
Since it is possible for custom Stringer/error interfaces to panic, spew | |||
detects them and handles them internally by printing the panic information | |||
inline with the output. Since spew is intended to provide deep pretty printing | |||
capabilities on structures, it intentionally does not return any errors. | |||
*/ | |||
package spew |
@@ -0,0 +1,509 @@ | |||
/* | |||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||
* | |||
* Permission to use, copy, modify, and distribute this software for any | |||
* purpose with or without fee is hereby granted, provided that the above | |||
* copyright notice and this permission notice appear in all copies. | |||
* | |||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||
*/ | |||
package spew | |||
import ( | |||
"bytes" | |||
"encoding/hex" | |||
"fmt" | |||
"io" | |||
"os" | |||
"reflect" | |||
"regexp" | |||
"strconv" | |||
"strings" | |||
) | |||
var ( | |||
// uint8Type is a reflect.Type representing a uint8. It is used to | |||
// convert cgo types to uint8 slices for hexdumping. | |||
uint8Type = reflect.TypeOf(uint8(0)) | |||
// cCharRE is a regular expression that matches a cgo char. | |||
// It is used to detect character arrays to hexdump them. | |||
cCharRE = regexp.MustCompile("^.*\\._Ctype_char$") | |||
// cUnsignedCharRE is a regular expression that matches a cgo unsigned | |||
// char. It is used to detect unsigned character arrays to hexdump | |||
// them. | |||
cUnsignedCharRE = regexp.MustCompile("^.*\\._Ctype_unsignedchar$") | |||
// cUint8tCharRE is a regular expression that matches a cgo uint8_t. | |||
// It is used to detect uint8_t arrays to hexdump them. | |||
cUint8tCharRE = regexp.MustCompile("^.*\\._Ctype_uint8_t$") | |||
) | |||
// dumpState contains information about the state of a dump operation. | |||
type dumpState struct { | |||
w io.Writer | |||
depth int | |||
pointers map[uintptr]int | |||
ignoreNextType bool | |||
ignoreNextIndent bool | |||
cs *ConfigState | |||
} | |||
// indent performs indentation according to the depth level and cs.Indent | |||
// option. | |||
func (d *dumpState) indent() { | |||
if d.ignoreNextIndent { | |||
d.ignoreNextIndent = false | |||
return | |||
} | |||
d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth)) | |||
} | |||
// unpackValue returns values inside of non-nil interfaces when possible. | |||
// This is useful for data types like structs, arrays, slices, and maps which | |||
// can contain varying types packed inside an interface. | |||
func (d *dumpState) unpackValue(v reflect.Value) reflect.Value { | |||
if v.Kind() == reflect.Interface && !v.IsNil() { | |||
v = v.Elem() | |||
} | |||
return v | |||
} | |||
// dumpPtr handles formatting of pointers by indirecting them as necessary. | |||
func (d *dumpState) dumpPtr(v reflect.Value) { | |||
// Remove pointers at or below the current depth from map used to detect | |||
// circular refs. | |||
for k, depth := range d.pointers { | |||
if depth >= d.depth { | |||
delete(d.pointers, k) | |||
} | |||
} | |||
// Keep list of all dereferenced pointers to show later. | |||
pointerChain := make([]uintptr, 0) | |||
// Figure out how many levels of indirection there are by dereferencing | |||
// pointers and unpacking interfaces down the chain while detecting circular | |||
// references. | |||
nilFound := false | |||
cycleFound := false | |||
indirects := 0 | |||
ve := v | |||
for ve.Kind() == reflect.Ptr { | |||
if ve.IsNil() { | |||
nilFound = true | |||
break | |||
} | |||
indirects++ | |||
addr := ve.Pointer() | |||
pointerChain = append(pointerChain, addr) | |||
if pd, ok := d.pointers[addr]; ok && pd < d.depth { | |||
cycleFound = true | |||
indirects-- | |||
break | |||
} | |||
d.pointers[addr] = d.depth | |||
ve = ve.Elem() | |||
if ve.Kind() == reflect.Interface { | |||
if ve.IsNil() { | |||
nilFound = true | |||
break | |||
} | |||
ve = ve.Elem() | |||
} | |||
} | |||
// Display type information. | |||
d.w.Write(openParenBytes) | |||
d.w.Write(bytes.Repeat(asteriskBytes, indirects)) | |||
d.w.Write([]byte(ve.Type().String())) | |||
d.w.Write(closeParenBytes) | |||
// Display pointer information. | |||
if len(pointerChain) > 0 { | |||
d.w.Write(openParenBytes) | |||
for i, addr := range pointerChain { | |||
if i > 0 { | |||
d.w.Write(pointerChainBytes) | |||
} | |||
printHexPtr(d.w, addr) | |||
} | |||
d.w.Write(closeParenBytes) | |||
} | |||
// Display dereferenced value. | |||
d.w.Write(openParenBytes) | |||
switch { | |||
case nilFound == true: | |||
d.w.Write(nilAngleBytes) | |||
case cycleFound == true: | |||
d.w.Write(circularBytes) | |||
default: | |||
d.ignoreNextType = true | |||
d.dump(ve) | |||
} | |||
d.w.Write(closeParenBytes) | |||
} | |||
// dumpSlice handles formatting of arrays and slices. Byte (uint8 under | |||
// reflection) arrays and slices are dumped in hexdump -C fashion. | |||
func (d *dumpState) dumpSlice(v reflect.Value) { | |||
// Determine whether this type should be hex dumped or not. Also, | |||
// for types which should be hexdumped, try to use the underlying data | |||
// first, then fall back to trying to convert them to a uint8 slice. | |||
var buf []uint8 | |||
doConvert := false | |||
doHexDump := false | |||
numEntries := v.Len() | |||
if numEntries > 0 { | |||
vt := v.Index(0).Type() | |||
vts := vt.String() | |||
switch { | |||
// C types that need to be converted. | |||
case cCharRE.MatchString(vts): | |||
fallthrough | |||
case cUnsignedCharRE.MatchString(vts): | |||
fallthrough | |||
case cUint8tCharRE.MatchString(vts): | |||
doConvert = true | |||
// Try to use existing uint8 slices and fall back to converting | |||
// and copying if that fails. | |||
case vt.Kind() == reflect.Uint8: | |||
// We need an addressable interface to convert the type | |||
// to a byte slice. However, the reflect package won't | |||
// give us an interface on certain things like | |||
// unexported struct fields in order to enforce | |||
// visibility rules. We use unsafe, when available, to | |||
// bypass these restrictions since this package does not | |||
// mutate the values. | |||
vs := v | |||
if !vs.CanInterface() || !vs.CanAddr() { | |||
vs = unsafeReflectValue(vs) | |||
} | |||
if !UnsafeDisabled { | |||
vs = vs.Slice(0, numEntries) | |||
// Use the existing uint8 slice if it can be | |||
// type asserted. | |||
iface := vs.Interface() | |||
if slice, ok := iface.([]uint8); ok { | |||
buf = slice | |||
doHexDump = true | |||
break | |||
} | |||
} | |||
// The underlying data needs to be converted if it can't | |||
// be type asserted to a uint8 slice. | |||
doConvert = true | |||
} | |||
// Copy and convert the underlying type if needed. | |||
if doConvert && vt.ConvertibleTo(uint8Type) { | |||
// Convert and copy each element into a uint8 byte | |||
// slice. | |||
buf = make([]uint8, numEntries) | |||
for i := 0; i < numEntries; i++ { | |||
vv := v.Index(i) | |||
buf[i] = uint8(vv.Convert(uint8Type).Uint()) | |||
} | |||
doHexDump = true | |||
} | |||
} | |||
// Hexdump the entire slice as needed. | |||
if doHexDump { | |||
indent := strings.Repeat(d.cs.Indent, d.depth) | |||
str := indent + hex.Dump(buf) | |||
str = strings.Replace(str, "\n", "\n"+indent, -1) | |||
str = strings.TrimRight(str, d.cs.Indent) | |||
d.w.Write([]byte(str)) | |||
return | |||
} | |||
// Recursively call dump for each item. | |||
for i := 0; i < numEntries; i++ { | |||
d.dump(d.unpackValue(v.Index(i))) | |||
if i < (numEntries - 1) { | |||
d.w.Write(commaNewlineBytes) | |||
} else { | |||
d.w.Write(newlineBytes) | |||
} | |||
} | |||
} | |||
// dump is the main workhorse for dumping a value. It uses the passed reflect | |||
// value to figure out what kind of object we are dealing with and formats it | |||
// appropriately. It is a recursive function, however circular data structures | |||
// are detected and handled properly. | |||
func (d *dumpState) dump(v reflect.Value) { | |||
// Handle invalid reflect values immediately. | |||
kind := v.Kind() | |||
if kind == reflect.Invalid { | |||
d.w.Write(invalidAngleBytes) | |||
return | |||
} | |||
// Handle pointers specially. | |||
if kind == reflect.Ptr { | |||
d.indent() | |||
d.dumpPtr(v) | |||
return | |||
} | |||
// Print type information unless already handled elsewhere. | |||
if !d.ignoreNextType { | |||
d.indent() | |||
d.w.Write(openParenBytes) | |||
d.w.Write([]byte(v.Type().String())) | |||
d.w.Write(closeParenBytes) | |||
d.w.Write(spaceBytes) | |||
} | |||
d.ignoreNextType = false | |||
// Display length and capacity if the built-in len and cap functions | |||
// work with the value's kind and the len/cap itself is non-zero. | |||
valueLen, valueCap := 0, 0 | |||
switch v.Kind() { | |||
case reflect.Array, reflect.Slice, reflect.Chan: | |||
valueLen, valueCap = v.Len(), v.Cap() | |||
case reflect.Map, reflect.String: | |||
valueLen = v.Len() | |||
} | |||
if valueLen != 0 || valueCap != 0 { | |||
d.w.Write(openParenBytes) | |||
if valueLen != 0 { | |||
d.w.Write(lenEqualsBytes) | |||
printInt(d.w, int64(valueLen), 10) | |||
} | |||
if valueCap != 0 { | |||
if valueLen != 0 { | |||
d.w.Write(spaceBytes) | |||
} | |||
d.w.Write(capEqualsBytes) | |||
printInt(d.w, int64(valueCap), 10) | |||
} | |||
d.w.Write(closeParenBytes) | |||
d.w.Write(spaceBytes) | |||
} | |||
// Call Stringer/error interfaces if they exist and the handle methods flag | |||
// is enabled | |||
if !d.cs.DisableMethods { | |||
if (kind != reflect.Invalid) && (kind != reflect.Interface) { | |||
if handled := handleMethods(d.cs, d.w, v); handled { | |||
return | |||
} | |||
} | |||
} | |||
switch kind { | |||
case reflect.Invalid: | |||
// Do nothing. We should never get here since invalid has already | |||
// been handled above. | |||
case reflect.Bool: | |||
printBool(d.w, v.Bool()) | |||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: | |||
printInt(d.w, v.Int(), 10) | |||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: | |||
printUint(d.w, v.Uint(), 10) | |||
case reflect.Float32: | |||
printFloat(d.w, v.Float(), 32) | |||
case reflect.Float64: | |||
printFloat(d.w, v.Float(), 64) | |||
case reflect.Complex64: | |||
printComplex(d.w, v.Complex(), 32) | |||
case reflect.Complex128: | |||
printComplex(d.w, v.Complex(), 64) | |||
case reflect.Slice: | |||
if v.IsNil() { | |||
d.w.Write(nilAngleBytes) | |||
break | |||
} | |||
fallthrough | |||
case reflect.Array: | |||
d.w.Write(openBraceNewlineBytes) | |||
d.depth++ | |||
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { | |||
d.indent() | |||
d.w.Write(maxNewlineBytes) | |||
} else { | |||
d.dumpSlice(v) | |||
} | |||
d.depth-- | |||
d.indent() | |||
d.w.Write(closeBraceBytes) | |||
case reflect.String: | |||
d.w.Write([]byte(strconv.Quote(v.String()))) | |||
case reflect.Interface: | |||
// The only time we should get here is for nil interfaces due to | |||
// unpackValue calls. | |||
if v.IsNil() { | |||
d.w.Write(nilAngleBytes) | |||
} | |||
case reflect.Ptr: | |||
// Do nothing. We should never get here since pointers have already | |||
// been handled above. | |||
case reflect.Map: | |||
// nil maps should be indicated as different than empty maps | |||
if v.IsNil() { | |||
d.w.Write(nilAngleBytes) | |||
break | |||
} | |||
d.w.Write(openBraceNewlineBytes) | |||
d.depth++ | |||
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { | |||
d.indent() | |||
d.w.Write(maxNewlineBytes) | |||
} else { | |||
numEntries := v.Len() | |||
keys := v.MapKeys() | |||
if d.cs.SortKeys { | |||
sortValues(keys, d.cs) | |||
} | |||
for i, key := range keys { | |||
d.dump(d.unpackValue(key)) | |||
d.w.Write(colonSpaceBytes) | |||
d.ignoreNextIndent = true | |||
d.dump(d.unpackValue(v.MapIndex(key))) | |||
if i < (numEntries - 1) { | |||
d.w.Write(commaNewlineBytes) | |||
} else { | |||
d.w.Write(newlineBytes) | |||
} | |||
} | |||
} | |||
d.depth-- | |||
d.indent() | |||
d.w.Write(closeBraceBytes) | |||
case reflect.Struct: | |||
d.w.Write(openBraceNewlineBytes) | |||
d.depth++ | |||
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { | |||
d.indent() | |||
d.w.Write(maxNewlineBytes) | |||
} else { | |||
vt := v.Type() | |||
numFields := v.NumField() | |||
for i := 0; i < numFields; i++ { | |||
d.indent() | |||
vtf := vt.Field(i) | |||
d.w.Write([]byte(vtf.Name)) | |||
d.w.Write(colonSpaceBytes) | |||
d.ignoreNextIndent = true | |||
d.dump(d.unpackValue(v.Field(i))) | |||
if i < (numFields - 1) { | |||
d.w.Write(commaNewlineBytes) | |||
} else { | |||
d.w.Write(newlineBytes) | |||
} | |||
} | |||
} | |||
d.depth-- | |||
d.indent() | |||
d.w.Write(closeBraceBytes) | |||
case reflect.Uintptr: | |||
printHexPtr(d.w, uintptr(v.Uint())) | |||
case reflect.UnsafePointer, reflect.Chan, reflect.Func: | |||
printHexPtr(d.w, v.Pointer()) | |||
// There were not any other types at the time this code was written, but | |||
// fall back to letting the default fmt package handle it in case any new | |||
// types are added. | |||
default: | |||
if v.CanInterface() { | |||
fmt.Fprintf(d.w, "%v", v.Interface()) | |||
} else { | |||
fmt.Fprintf(d.w, "%v", v.String()) | |||
} | |||
} | |||
} | |||
// fdump is a helper function to consolidate the logic from the various public | |||
// methods which take varying writers and config states. | |||
func fdump(cs *ConfigState, w io.Writer, a ...interface{}) { | |||
for _, arg := range a { | |||
if arg == nil { | |||
w.Write(interfaceBytes) | |||
w.Write(spaceBytes) | |||
w.Write(nilAngleBytes) | |||
w.Write(newlineBytes) | |||
continue | |||
} | |||
d := dumpState{w: w, cs: cs} | |||
d.pointers = make(map[uintptr]int) | |||
d.dump(reflect.ValueOf(arg)) | |||
d.w.Write(newlineBytes) | |||
} | |||
} | |||
// Fdump formats and displays the passed arguments to io.Writer w. It formats | |||
// exactly the same as Dump. | |||
func Fdump(w io.Writer, a ...interface{}) { | |||
fdump(&Config, w, a...) | |||
} | |||
// Sdump returns a string with the passed arguments formatted exactly the same | |||
// as Dump. | |||
func Sdump(a ...interface{}) string { | |||
var buf bytes.Buffer | |||
fdump(&Config, &buf, a...) | |||
return buf.String() | |||
} | |||
/* | |||
Dump displays the passed parameters to standard out with newlines, customizable | |||
indentation, and additional debug information such as complete types and all | |||
pointer addresses used to indirect to the final value. It provides the | |||
following features over the built-in printing facilities provided by the fmt | |||
package: | |||
* Pointers are dereferenced and followed | |||
* Circular data structures are detected and handled properly | |||
* Custom Stringer/error interfaces are optionally invoked, including | |||
on unexported types | |||
* Custom types which only implement the Stringer/error interfaces via | |||
a pointer receiver are optionally invoked when passing non-pointer | |||
variables | |||
* Byte arrays and slices are dumped like the hexdump -C command which | |||
includes offsets, byte values in hex, and ASCII output | |||
The configuration options are controlled by an exported package global, | |||
spew.Config. See ConfigState for options documentation. | |||
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to | |||
get the formatted result as a string. | |||
*/ | |||
func Dump(a ...interface{}) { | |||
fdump(&Config, os.Stdout, a...) | |||
} |
@@ -0,0 +1,419 @@ | |||
/* | |||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||
* | |||
* Permission to use, copy, modify, and distribute this software for any | |||
* purpose with or without fee is hereby granted, provided that the above | |||
* copyright notice and this permission notice appear in all copies. | |||
* | |||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||
*/ | |||
package spew | |||
import ( | |||
"bytes" | |||
"fmt" | |||
"reflect" | |||
"strconv" | |||
"strings" | |||
) | |||
// supportedFlags is a list of all the character flags supported by fmt package. | |||
const supportedFlags = "0-+# " | |||
// formatState implements the fmt.Formatter interface and contains information | |||
// about the state of a formatting operation. The NewFormatter function can | |||
// be used to get a new Formatter which can be used directly as arguments | |||
// in standard fmt package printing calls. | |||
type formatState struct { | |||
value interface{} | |||
fs fmt.State | |||
depth int | |||
pointers map[uintptr]int | |||
ignoreNextType bool | |||
cs *ConfigState | |||
} | |||
// buildDefaultFormat recreates the original format string without precision | |||
// and width information to pass in to fmt.Sprintf in the case of an | |||
// unrecognized type. Unless new types are added to the language, this | |||
// function won't ever be called. | |||
func (f *formatState) buildDefaultFormat() (format string) { | |||
buf := bytes.NewBuffer(percentBytes) | |||
for _, flag := range supportedFlags { | |||
if f.fs.Flag(int(flag)) { | |||
buf.WriteRune(flag) | |||
} | |||
} | |||
buf.WriteRune('v') | |||
format = buf.String() | |||
return format | |||
} | |||
// constructOrigFormat recreates the original format string including precision | |||
// and width information to pass along to the standard fmt package. This allows | |||
// automatic deferral of all format strings this package doesn't support. | |||
func (f *formatState) constructOrigFormat(verb rune) (format string) { | |||
buf := bytes.NewBuffer(percentBytes) | |||
for _, flag := range supportedFlags { | |||
if f.fs.Flag(int(flag)) { | |||
buf.WriteRune(flag) | |||
} | |||
} | |||
if width, ok := f.fs.Width(); ok { | |||
buf.WriteString(strconv.Itoa(width)) | |||
} | |||
if precision, ok := f.fs.Precision(); ok { | |||
buf.Write(precisionBytes) | |||
buf.WriteString(strconv.Itoa(precision)) | |||
} | |||
buf.WriteRune(verb) | |||
format = buf.String() | |||
return format | |||
} | |||
// unpackValue returns values inside of non-nil interfaces when possible and | |||
// ensures that types for values which have been unpacked from an interface | |||
// are displayed when the show types flag is also set. | |||
// This is useful for data types like structs, arrays, slices, and maps which | |||
// can contain varying types packed inside an interface. | |||
func (f *formatState) unpackValue(v reflect.Value) reflect.Value { | |||
if v.Kind() == reflect.Interface { | |||
f.ignoreNextType = false | |||
if !v.IsNil() { | |||
v = v.Elem() | |||
} | |||
} | |||
return v | |||
} | |||
// formatPtr handles formatting of pointers by indirecting them as necessary. | |||
func (f *formatState) formatPtr(v reflect.Value) { | |||
// Display nil if top level pointer is nil. | |||
showTypes := f.fs.Flag('#') | |||
if v.IsNil() && (!showTypes || f.ignoreNextType) { | |||
f.fs.Write(nilAngleBytes) | |||
return | |||
} | |||
// Remove pointers at or below the current depth from map used to detect | |||
// circular refs. | |||
for k, depth := range f.pointers { | |||
if depth >= f.depth { | |||
delete(f.pointers, k) | |||
} | |||
} | |||
// Keep list of all dereferenced pointers to possibly show later. | |||
pointerChain := make([]uintptr, 0) | |||
// Figure out how many levels of indirection there are by derferencing | |||
// pointers and unpacking interfaces down the chain while detecting circular | |||
// references. | |||
nilFound := false | |||
cycleFound := false | |||
indirects := 0 | |||
ve := v | |||
for ve.Kind() == reflect.Ptr { | |||
if ve.IsNil() { | |||
nilFound = true | |||
break | |||
} | |||
indirects++ | |||
addr := ve.Pointer() | |||
pointerChain = append(pointerChain, addr) | |||
if pd, ok := f.pointers[addr]; ok && pd < f.depth { | |||
cycleFound = true | |||
indirects-- | |||
break | |||
} | |||
f.pointers[addr] = f.depth | |||
ve = ve.Elem() | |||
if ve.Kind() == reflect.Interface { | |||
if ve.IsNil() { | |||
nilFound = true | |||
break | |||
} | |||
ve = ve.Elem() | |||
} | |||
} | |||
// Display type or indirection level depending on flags. | |||
if showTypes && !f.ignoreNextType { | |||
f.fs.Write(openParenBytes) | |||
f.fs.Write(bytes.Repeat(asteriskBytes, indirects)) | |||
f.fs.Write([]byte(ve.Type().String())) | |||
f.fs.Write(closeParenBytes) | |||
} else { | |||
if nilFound || cycleFound { | |||
indirects += strings.Count(ve.Type().String(), "*") | |||
} | |||
f.fs.Write(openAngleBytes) | |||
f.fs.Write([]byte(strings.Repeat("*", indirects))) | |||
f.fs.Write(closeAngleBytes) | |||
} | |||
// Display pointer information depending on flags. | |||
if f.fs.Flag('+') && (len(pointerChain) > 0) { | |||
f.fs.Write(openParenBytes) | |||
for i, addr := range pointerChain { | |||
if i > 0 { | |||
f.fs.Write(pointerChainBytes) | |||
} | |||
printHexPtr(f.fs, addr) | |||
} | |||
f.fs.Write(closeParenBytes) | |||
} | |||
// Display dereferenced value. | |||
switch { | |||
case nilFound == true: | |||
f.fs.Write(nilAngleBytes) | |||
case cycleFound == true: | |||
f.fs.Write(circularShortBytes) | |||
default: | |||
f.ignoreNextType = true | |||
f.format(ve) | |||
} | |||
} | |||
// format is the main workhorse for providing the Formatter interface. It | |||
// uses the passed reflect value to figure out what kind of object we are | |||
// dealing with and formats it appropriately. It is a recursive function, | |||
// however circular data structures are detected and handled properly. | |||
func (f *formatState) format(v reflect.Value) { | |||
// Handle invalid reflect values immediately. | |||
kind := v.Kind() | |||
if kind == reflect.Invalid { | |||
f.fs.Write(invalidAngleBytes) | |||
return | |||
} | |||
// Handle pointers specially. | |||
if kind == reflect.Ptr { | |||
f.formatPtr(v) | |||
return | |||
} | |||
// Print type information unless already handled elsewhere. | |||
if !f.ignoreNextType && f.fs.Flag('#') { | |||
f.fs.Write(openParenBytes) | |||
f.fs.Write([]byte(v.Type().String())) | |||
f.fs.Write(closeParenBytes) | |||
} | |||
f.ignoreNextType = false | |||
// Call Stringer/error interfaces if they exist and the handle methods | |||
// flag is enabled. | |||
if !f.cs.DisableMethods { | |||
if (kind != reflect.Invalid) && (kind != reflect.Interface) { | |||
if handled := handleMethods(f.cs, f.fs, v); handled { | |||
return | |||
} | |||
} | |||
} | |||
switch kind { | |||
case reflect.Invalid: | |||
// Do nothing. We should never get here since invalid has already | |||
// been handled above. | |||
case reflect.Bool: | |||
printBool(f.fs, v.Bool()) | |||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: | |||
printInt(f.fs, v.Int(), 10) | |||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: | |||
printUint(f.fs, v.Uint(), 10) | |||
case reflect.Float32: | |||
printFloat(f.fs, v.Float(), 32) | |||
case reflect.Float64: | |||
printFloat(f.fs, v.Float(), 64) | |||
case reflect.Complex64: | |||
printComplex(f.fs, v.Complex(), 32) | |||
case reflect.Complex128: | |||
printComplex(f.fs, v.Complex(), 64) | |||
case reflect.Slice: | |||
if v.IsNil() { | |||
f.fs.Write(nilAngleBytes) | |||
break | |||
} | |||
fallthrough | |||
case reflect.Array: | |||
f.fs.Write(openBracketBytes) | |||
f.depth++ | |||
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) { | |||
f.fs.Write(maxShortBytes) | |||
} else { | |||
numEntries := v.Len() | |||
for i := 0; i < numEntries; i++ { | |||
if i > 0 { | |||
f.fs.Write(spaceBytes) | |||
} | |||
f.ignoreNextType = true | |||
f.format(f.unpackValue(v.Index(i))) | |||
} | |||
} | |||
f.depth-- | |||
f.fs.Write(closeBracketBytes) | |||
case reflect.String: | |||
f.fs.Write([]byte(v.String())) | |||
case reflect.Interface: | |||
// The only time we should get here is for nil interfaces due to | |||
// unpackValue calls. | |||
if v.IsNil() { | |||
f.fs.Write(nilAngleBytes) | |||
} | |||
case reflect.Ptr: | |||
// Do nothing. We should never get here since pointers have already | |||
// been handled above. | |||
case reflect.Map: | |||
// nil maps should be indicated as different than empty maps | |||
if v.IsNil() { | |||
f.fs.Write(nilAngleBytes) | |||
break | |||
} | |||
f.fs.Write(openMapBytes) | |||
f.depth++ | |||
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) { | |||
f.fs.Write(maxShortBytes) | |||
} else { | |||
keys := v.MapKeys() | |||
if f.cs.SortKeys { | |||
sortValues(keys, f.cs) | |||
} | |||
for i, key := range keys { | |||
if i > 0 { | |||
f.fs.Write(spaceBytes) | |||
} | |||
f.ignoreNextType = true | |||
f.format(f.unpackValue(key)) | |||
f.fs.Write(colonBytes) | |||
f.ignoreNextType = true | |||
f.format(f.unpackValue(v.MapIndex(key))) | |||
} | |||
} | |||
f.depth-- | |||
f.fs.Write(closeMapBytes) | |||
case reflect.Struct: | |||
numFields := v.NumField() | |||
f.fs.Write(openBraceBytes) | |||
f.depth++ | |||
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) { | |||
f.fs.Write(maxShortBytes) | |||
} else { | |||
vt := v.Type() | |||
for i := 0; i < numFields; i++ { | |||
if i > 0 { | |||
f.fs.Write(spaceBytes) | |||
} | |||
vtf := vt.Field(i) | |||
if f.fs.Flag('+') || f.fs.Flag('#') { | |||
f.fs.Write([]byte(vtf.Name)) | |||
f.fs.Write(colonBytes) | |||
} | |||
f.format(f.unpackValue(v.Field(i))) | |||
} | |||
} | |||
f.depth-- | |||
f.fs.Write(closeBraceBytes) | |||
case reflect.Uintptr: | |||
printHexPtr(f.fs, uintptr(v.Uint())) | |||
case reflect.UnsafePointer, reflect.Chan, reflect.Func: | |||
printHexPtr(f.fs, v.Pointer()) | |||
// There were not any other types at the time this code was written, but | |||
// fall back to letting the default fmt package handle it if any get added. | |||
default: | |||
format := f.buildDefaultFormat() | |||
if v.CanInterface() { | |||
fmt.Fprintf(f.fs, format, v.Interface()) | |||
} else { | |||
fmt.Fprintf(f.fs, format, v.String()) | |||
} | |||
} | |||
} | |||
// Format satisfies the fmt.Formatter interface. See NewFormatter for usage | |||
// details. | |||
func (f *formatState) Format(fs fmt.State, verb rune) { | |||
f.fs = fs | |||
// Use standard formatting for verbs that are not v. | |||
if verb != 'v' { | |||
format := f.constructOrigFormat(verb) | |||
fmt.Fprintf(fs, format, f.value) | |||
return | |||
} | |||
if f.value == nil { | |||
if fs.Flag('#') { | |||
fs.Write(interfaceBytes) | |||
} | |||
fs.Write(nilAngleBytes) | |||
return | |||
} | |||
f.format(reflect.ValueOf(f.value)) | |||
} | |||
// newFormatter is a helper function to consolidate the logic from the various | |||
// public methods which take varying config states. | |||
func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter { | |||
fs := &formatState{value: v, cs: cs} | |||
fs.pointers = make(map[uintptr]int) | |||
return fs | |||
} | |||
/* | |||
NewFormatter returns a custom formatter that satisfies the fmt.Formatter | |||
interface. As a result, it integrates cleanly with standard fmt package | |||
printing functions. The formatter is useful for inline printing of smaller data | |||
types similar to the standard %v format specifier. | |||
The custom formatter only responds to the %v (most compact), %+v (adds pointer | |||
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb | |||
combinations. Any other verbs such as %x and %q will be sent to the the | |||
standard fmt package for formatting. In addition, the custom formatter ignores | |||
the width and precision arguments (however they will still work on the format | |||
specifiers not handled by the custom formatter). | |||
Typically this function shouldn't be called directly. It is much easier to make | |||
use of the custom formatter by calling one of the convenience functions such as | |||
Printf, Println, or Fprintf. | |||
*/ | |||
func NewFormatter(v interface{}) fmt.Formatter { | |||
return newFormatter(&Config, v) | |||
} |
@@ -0,0 +1,148 @@ | |||
/* | |||
* Copyright (c) 2013 Dave Collins <dave@davec.name> | |||
* | |||
* Permission to use, copy, modify, and distribute this software for any | |||
* purpose with or without fee is hereby granted, provided that the above | |||
* copyright notice and this permission notice appear in all copies. | |||
* | |||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||
*/ | |||
package spew | |||
import ( | |||
"fmt" | |||
"io" | |||
) | |||
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were | |||
// passed with a default Formatter interface returned by NewFormatter. It | |||
// returns the formatted string as a value that satisfies error. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b)) | |||
func Errorf(format string, a ...interface{}) (err error) { | |||
return fmt.Errorf(format, convertArgs(a)...) | |||
} | |||
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were | |||
// passed with a default Formatter interface returned by NewFormatter. It | |||
// returns the number of bytes written and any write error encountered. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b)) | |||
func Fprint(w io.Writer, a ...interface{}) (n int, err error) { | |||
return fmt.Fprint(w, convertArgs(a)...) | |||
} | |||
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were | |||
// passed with a default Formatter interface returned by NewFormatter. It | |||
// returns the number of bytes written and any write error encountered. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b)) | |||
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) { | |||
return fmt.Fprintf(w, format, convertArgs(a)...) | |||
} | |||
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it | |||
// passed with a default Formatter interface returned by NewFormatter. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b)) | |||
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) { | |||
return fmt.Fprintln(w, convertArgs(a)...) | |||
} | |||
// Print is a wrapper for fmt.Print that treats each argument as if it were | |||
// passed with a default Formatter interface returned by NewFormatter. It | |||
// returns the number of bytes written and any write error encountered. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b)) | |||
func Print(a ...interface{}) (n int, err error) { | |||
return fmt.Print(convertArgs(a)...) | |||
} | |||
// Printf is a wrapper for fmt.Printf that treats each argument as if it were | |||
// passed with a default Formatter interface returned by NewFormatter. It | |||
// returns the number of bytes written and any write error encountered. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b)) | |||
func Printf(format string, a ...interface{}) (n int, err error) { | |||
return fmt.Printf(format, convertArgs(a)...) | |||
} | |||
// Println is a wrapper for fmt.Println that treats each argument as if it were | |||
// passed with a default Formatter interface returned by NewFormatter. It | |||
// returns the number of bytes written and any write error encountered. See | |||
// NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b)) | |||
func Println(a ...interface{}) (n int, err error) { | |||
return fmt.Println(convertArgs(a)...) | |||
} | |||
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were | |||
// passed with a default Formatter interface returned by NewFormatter. It | |||
// returns the resulting string. See NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b)) | |||
func Sprint(a ...interface{}) string { | |||
return fmt.Sprint(convertArgs(a)...) | |||
} | |||
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were | |||
// passed with a default Formatter interface returned by NewFormatter. It | |||
// returns the resulting string. See NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b)) | |||
func Sprintf(format string, a ...interface{}) string { | |||
return fmt.Sprintf(format, convertArgs(a)...) | |||
} | |||
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it | |||
// were passed with a default Formatter interface returned by NewFormatter. It | |||
// returns the resulting string. See NewFormatter for formatting details. | |||
// | |||
// This function is shorthand for the following syntax: | |||
// | |||
// fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b)) | |||
func Sprintln(a ...interface{}) string { | |||
return fmt.Sprintln(convertArgs(a)...) | |||
} | |||
// convertArgs accepts a slice of arguments and returns a slice of the same | |||
// length with each argument converted to a default spew Formatter interface. | |||
func convertArgs(args []interface{}) (formatters []interface{}) { | |||
formatters = make([]interface{}, len(args)) | |||
for index, arg := range args { | |||
formatters[index] = NewFormatter(arg) | |||
} | |||
return formatters | |||
} |
@@ -0,0 +1,27 @@ | |||
Copyright (c) 2013, Patrick Mezard | |||
All rights reserved. | |||
Redistribution and use in source and binary forms, with or without | |||
modification, are permitted provided that the following conditions are | |||
met: | |||
Redistributions of source code must retain the above copyright | |||
notice, this list of conditions and the following disclaimer. | |||
Redistributions in binary form must reproduce the above copyright | |||
notice, this list of conditions and the following disclaimer in the | |||
documentation and/or other materials provided with the distribution. | |||
The names of its contributors may not be used to endorse or promote | |||
products derived from this software without specific prior written | |||
permission. | |||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS | |||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED | |||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A | |||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |||
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED | |||
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
@@ -0,0 +1,758 @@ | |||
// Package difflib is a partial port of Python difflib module. | |||
// | |||
// It provides tools to compare sequences of strings and generate textual diffs. | |||
// | |||
// The following class and functions have been ported: | |||
// | |||
// - SequenceMatcher | |||
// | |||
// - unified_diff | |||
// | |||
// - context_diff | |||
// | |||
// Getting unified diffs was the main goal of the port. Keep in mind this code | |||
// is mostly suitable to output text differences in a human friendly way, there | |||
// are no guarantees generated diffs are consumable by patch(1). | |||
package difflib | |||
import ( | |||
"bufio" | |||
"bytes" | |||
"fmt" | |||
"io" | |||
"strings" | |||
) | |||
func min(a, b int) int { | |||
if a < b { | |||
return a | |||
} | |||
return b | |||
} | |||
func max(a, b int) int { | |||
if a > b { | |||
return a | |||
} | |||
return b | |||
} | |||
func calculateRatio(matches, length int) float64 { | |||
if length > 0 { | |||
return 2.0 * float64(matches) / float64(length) | |||
} | |||
return 1.0 | |||
} | |||
type Match struct { | |||
A int | |||
B int | |||
Size int | |||
} | |||
type OpCode struct { | |||
Tag byte | |||
I1 int | |||
I2 int | |||
J1 int | |||
J2 int | |||
} | |||
// SequenceMatcher compares sequence of strings. The basic | |||
// algorithm predates, and is a little fancier than, an algorithm | |||
// published in the late 1980's by Ratcliff and Obershelp under the | |||
// hyperbolic name "gestalt pattern matching". The basic idea is to find | |||
// the longest contiguous matching subsequence that contains no "junk" | |||
// elements (R-O doesn't address junk). The same idea is then applied | |||
// recursively to the pieces of the sequences to the left and to the right | |||
// of the matching subsequence. This does not yield minimal edit | |||
// sequences, but does tend to yield matches that "look right" to people. | |||
// | |||
// SequenceMatcher tries to compute a "human-friendly diff" between two | |||
// sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the | |||
// longest *contiguous* & junk-free matching subsequence. That's what | |||
// catches peoples' eyes. The Windows(tm) windiff has another interesting | |||
// notion, pairing up elements that appear uniquely in each sequence. | |||
// That, and the method here, appear to yield more intuitive difference | |||
// reports than does diff. This method appears to be the least vulnerable | |||
// to synching up on blocks of "junk lines", though (like blank lines in | |||
// ordinary text files, or maybe "<P>" lines in HTML files). That may be | |||
// because this is the only method of the 3 that has a *concept* of | |||
// "junk" <wink>. | |||
// | |||
// Timing: Basic R-O is cubic time worst case and quadratic time expected | |||
// case. SequenceMatcher is quadratic time for the worst case and has | |||
// expected-case behavior dependent in a complicated way on how many | |||
// elements the sequences have in common; best case time is linear. | |||
type SequenceMatcher struct { | |||
a []string | |||
b []string | |||
b2j map[string][]int | |||
IsJunk func(string) bool | |||
autoJunk bool | |||
bJunk map[string]struct{} | |||
matchingBlocks []Match | |||
fullBCount map[string]int | |||
bPopular map[string]struct{} | |||
opCodes []OpCode | |||
} | |||
func NewMatcher(a, b []string) *SequenceMatcher { | |||
m := SequenceMatcher{autoJunk: true} | |||
m.SetSeqs(a, b) | |||
return &m | |||
} | |||
func NewMatcherWithJunk(a, b []string, autoJunk bool, | |||
isJunk func(string) bool) *SequenceMatcher { | |||
m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk} | |||
m.SetSeqs(a, b) | |||
return &m | |||
} | |||
// Set two sequences to be compared. | |||
func (m *SequenceMatcher) SetSeqs(a, b []string) { | |||
m.SetSeq1(a) | |||
m.SetSeq2(b) | |||
} | |||
// Set the first sequence to be compared. The second sequence to be compared is | |||
// not changed. | |||
// | |||
// SequenceMatcher computes and caches detailed information about the second | |||
// sequence, so if you want to compare one sequence S against many sequences, | |||
// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other | |||
// sequences. | |||
// | |||
// See also SetSeqs() and SetSeq2(). | |||
func (m *SequenceMatcher) SetSeq1(a []string) { | |||
if &a == &m.a { | |||
return | |||
} | |||
m.a = a | |||
m.matchingBlocks = nil | |||
m.opCodes = nil | |||
} | |||
// Set the second sequence to be compared. The first sequence to be compared is | |||
// not changed. | |||
func (m *SequenceMatcher) SetSeq2(b []string) { | |||
if &b == &m.b { | |||
return | |||
} | |||
m.b = b | |||
m.matchingBlocks = nil | |||
m.opCodes = nil | |||
m.fullBCount = nil | |||
m.chainB() | |||
} | |||
func (m *SequenceMatcher) chainB() { | |||
// Populate line -> index mapping | |||
b2j := map[string][]int{} | |||
for i, s := range m.b { | |||
indices := b2j[s] | |||
indices = append(indices, i) | |||
b2j[s] = indices | |||
} | |||
// Purge junk elements | |||
m.bJunk = map[string]struct{}{} | |||
if m.IsJunk != nil { | |||
junk := m.bJunk | |||
for s, _ := range b2j { | |||
if m.IsJunk(s) { | |||
junk[s] = struct{}{} | |||
} | |||
} | |||
for s, _ := range junk { | |||
delete(b2j, s) | |||
} | |||
} | |||
// Purge remaining popular elements | |||
popular := map[string]struct{}{} | |||
n := len(m.b) | |||
if m.autoJunk && n >= 200 { | |||
ntest := n/100 + 1 | |||
for s, indices := range b2j { | |||
if len(indices) > ntest { | |||
popular[s] = struct{}{} | |||
} | |||
} | |||
for s, _ := range popular { | |||
delete(b2j, s) | |||
} | |||
} | |||
m.bPopular = popular | |||
m.b2j = b2j | |||
} | |||
func (m *SequenceMatcher) isBJunk(s string) bool { | |||
_, ok := m.bJunk[s] | |||
return ok | |||
} | |||
// Find longest matching block in a[alo:ahi] and b[blo:bhi]. | |||
// | |||
// If IsJunk is not defined: | |||
// | |||
// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where | |||
// alo <= i <= i+k <= ahi | |||
// blo <= j <= j+k <= bhi | |||
// and for all (i',j',k') meeting those conditions, | |||
// k >= k' | |||
// i <= i' | |||
// and if i == i', j <= j' | |||
// | |||
// In other words, of all maximal matching blocks, return one that | |||
// starts earliest in a, and of all those maximal matching blocks that | |||
// start earliest in a, return the one that starts earliest in b. | |||
// | |||
// If IsJunk is defined, first the longest matching block is | |||
// determined as above, but with the additional restriction that no | |||
// junk element appears in the block. Then that block is extended as | |||
// far as possible by matching (only) junk elements on both sides. So | |||
// the resulting block never matches on junk except as identical junk | |||
// happens to be adjacent to an "interesting" match. | |||
// | |||
// If no blocks match, return (alo, blo, 0). | |||
func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match { | |||
// CAUTION: stripping common prefix or suffix would be incorrect. | |||
// E.g., | |||
// ab | |||
// acab | |||
// Longest matching block is "ab", but if common prefix is | |||
// stripped, it's "a" (tied with "b"). UNIX(tm) diff does so | |||
// strip, so ends up claiming that ab is changed to acab by | |||
// inserting "ca" in the middle. That's minimal but unintuitive: | |||
// "it's obvious" that someone inserted "ac" at the front. | |||
// Windiff ends up at the same place as diff, but by pairing up | |||
// the unique 'b's and then matching the first two 'a's. | |||
besti, bestj, bestsize := alo, blo, 0 | |||
// find longest junk-free match | |||
// during an iteration of the loop, j2len[j] = length of longest | |||
// junk-free match ending with a[i-1] and b[j] | |||
j2len := map[int]int{} | |||
for i := alo; i != ahi; i++ { | |||
// look at all instances of a[i] in b; note that because | |||
// b2j has no junk keys, the loop is skipped if a[i] is junk | |||
newj2len := map[int]int{} | |||
for _, j := range m.b2j[m.a[i]] { | |||
// a[i] matches b[j] | |||
if j < blo { | |||
continue | |||
} | |||
if j >= bhi { | |||
break | |||
} | |||
k := j2len[j-1] + 1 | |||
newj2len[j] = k | |||
if k > bestsize { | |||
besti, bestj, bestsize = i-k+1, j-k+1, k | |||
} | |||
} | |||
j2len = newj2len | |||
} | |||
// Extend the best by non-junk elements on each end. In particular, | |||
// "popular" non-junk elements aren't in b2j, which greatly speeds | |||
// the inner loop above, but also means "the best" match so far | |||
// doesn't contain any junk *or* popular non-junk elements. | |||
for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) && | |||
m.a[besti-1] == m.b[bestj-1] { | |||
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1 | |||
} | |||
for besti+bestsize < ahi && bestj+bestsize < bhi && | |||
!m.isBJunk(m.b[bestj+bestsize]) && | |||
m.a[besti+bestsize] == m.b[bestj+bestsize] { | |||
bestsize += 1 | |||
} | |||
// Now that we have a wholly interesting match (albeit possibly | |||
// empty!), we may as well suck up the matching junk on each | |||
// side of it too. Can't think of a good reason not to, and it | |||
// saves post-processing the (possibly considerable) expense of | |||
// figuring out what to do with it. In the case of an empty | |||
// interesting match, this is clearly the right thing to do, | |||
// because no other kind of match is possible in the regions. | |||
for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) && | |||
m.a[besti-1] == m.b[bestj-1] { | |||
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1 | |||
} | |||
for besti+bestsize < ahi && bestj+bestsize < bhi && | |||
m.isBJunk(m.b[bestj+bestsize]) && | |||
m.a[besti+bestsize] == m.b[bestj+bestsize] { | |||
bestsize += 1 | |||
} | |||
return Match{A: besti, B: bestj, Size: bestsize} | |||
} | |||
// Return list of triples describing matching subsequences. | |||
// | |||
// Each triple is of the form (i, j, n), and means that | |||
// a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in | |||
// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are | |||
// adjacent triples in the list, and the second is not the last triple in the | |||
// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe | |||
// adjacent equal blocks. | |||
// | |||
// The last triple is a dummy, (len(a), len(b), 0), and is the only | |||
// triple with n==0. | |||
func (m *SequenceMatcher) GetMatchingBlocks() []Match { | |||
if m.matchingBlocks != nil { | |||
return m.matchingBlocks | |||
} | |||
var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match | |||
matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match { | |||
match := m.findLongestMatch(alo, ahi, blo, bhi) | |||
i, j, k := match.A, match.B, match.Size | |||
if match.Size > 0 { | |||
if alo < i && blo < j { | |||
matched = matchBlocks(alo, i, blo, j, matched) | |||
} | |||
matched = append(matched, match) | |||
if i+k < ahi && j+k < bhi { | |||
matched = matchBlocks(i+k, ahi, j+k, bhi, matched) | |||
} | |||
} | |||
return matched | |||
} | |||
matched := matchBlocks(0, len(m.a), 0, len(m.b), nil) | |||
// It's possible that we have adjacent equal blocks in the | |||
// matching_blocks list now. | |||
nonAdjacent := []Match{} | |||
i1, j1, k1 := 0, 0, 0 | |||
for _, b := range matched { | |||
// Is this block adjacent to i1, j1, k1? | |||
i2, j2, k2 := b.A, b.B, b.Size | |||
if i1+k1 == i2 && j1+k1 == j2 { | |||
// Yes, so collapse them -- this just increases the length of | |||
// the first block by the length of the second, and the first | |||
// block so lengthened remains the block to compare against. | |||
k1 += k2 | |||
} else { | |||
// Not adjacent. Remember the first block (k1==0 means it's | |||
// the dummy we started with), and make the second block the | |||
// new block to compare against. | |||
if k1 > 0 { | |||
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1}) | |||
} | |||
i1, j1, k1 = i2, j2, k2 | |||
} | |||
} | |||
if k1 > 0 { | |||
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1}) | |||
} | |||
nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0}) | |||
m.matchingBlocks = nonAdjacent | |||
return m.matchingBlocks | |||
} | |||
// Return list of 5-tuples describing how to turn a into b. | |||
// | |||
// Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple | |||
// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the | |||
// tuple preceding it, and likewise for j1 == the previous j2. | |||
// | |||
// The tags are characters, with these meanings: | |||
// | |||
// 'r' (replace): a[i1:i2] should be replaced by b[j1:j2] | |||
// | |||
// 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case. | |||
// | |||
// 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case. | |||
// | |||
// 'e' (equal): a[i1:i2] == b[j1:j2] | |||
func (m *SequenceMatcher) GetOpCodes() []OpCode { | |||
if m.opCodes != nil { | |||
return m.opCodes | |||
} | |||
i, j := 0, 0 | |||
matching := m.GetMatchingBlocks() | |||
opCodes := make([]OpCode, 0, len(matching)) | |||
for _, m := range matching { | |||
// invariant: we've pumped out correct diffs to change | |||
// a[:i] into b[:j], and the next matching block is | |||
// a[ai:ai+size] == b[bj:bj+size]. So we need to pump | |||
// out a diff to change a[i:ai] into b[j:bj], pump out | |||
// the matching block, and move (i,j) beyond the match | |||
ai, bj, size := m.A, m.B, m.Size | |||
tag := byte(0) | |||
if i < ai && j < bj { | |||
tag = 'r' | |||
} else if i < ai { | |||
tag = 'd' | |||
} else if j < bj { | |||
tag = 'i' | |||
} | |||
if tag > 0 { | |||
opCodes = append(opCodes, OpCode{tag, i, ai, j, bj}) | |||
} | |||
i, j = ai+size, bj+size | |||
// the list of matching blocks is terminated by a | |||
// sentinel with size 0 | |||
if size > 0 { | |||
opCodes = append(opCodes, OpCode{'e', ai, i, bj, j}) | |||
} | |||
} | |||
m.opCodes = opCodes | |||
return m.opCodes | |||
} | |||
// Isolate change clusters by eliminating ranges with no changes. | |||
// | |||
// Return a generator of groups with up to n lines of context. | |||
// Each group is in the same format as returned by GetOpCodes(). | |||
func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode { | |||
if n < 0 { | |||
n = 3 | |||
} | |||
codes := m.GetOpCodes() | |||
if len(codes) == 0 { | |||
codes = []OpCode{OpCode{'e', 0, 1, 0, 1}} | |||
} | |||
// Fixup leading and trailing groups if they show no changes. | |||
if codes[0].Tag == 'e' { | |||
c := codes[0] | |||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2 | |||
codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2} | |||
} | |||
if codes[len(codes)-1].Tag == 'e' { | |||
c := codes[len(codes)-1] | |||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2 | |||
codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)} | |||
} | |||
nn := n + n | |||
groups := [][]OpCode{} | |||
group := []OpCode{} | |||
for _, c := range codes { | |||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2 | |||
// End the current group and start a new one whenever | |||
// there is a large range with no changes. | |||
if c.Tag == 'e' && i2-i1 > nn { | |||
group = append(group, OpCode{c.Tag, i1, min(i2, i1+n), | |||
j1, min(j2, j1+n)}) | |||
groups = append(groups, group) | |||
group = []OpCode{} | |||
i1, j1 = max(i1, i2-n), max(j1, j2-n) | |||
} | |||
group = append(group, OpCode{c.Tag, i1, i2, j1, j2}) | |||
} | |||
if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') { | |||
groups = append(groups, group) | |||
} | |||
return groups | |||
} | |||
// Return a measure of the sequences' similarity (float in [0,1]). | |||
// | |||
// Where T is the total number of elements in both sequences, and | |||
// M is the number of matches, this is 2.0*M / T. | |||
// Note that this is 1 if the sequences are identical, and 0 if | |||
// they have nothing in common. | |||
// | |||
// .Ratio() is expensive to compute if you haven't already computed | |||
// .GetMatchingBlocks() or .GetOpCodes(), in which case you may | |||
// want to try .QuickRatio() or .RealQuickRation() first to get an | |||
// upper bound. | |||
func (m *SequenceMatcher) Ratio() float64 { | |||
matches := 0 | |||
for _, m := range m.GetMatchingBlocks() { | |||
matches += m.Size | |||
} | |||
return calculateRatio(matches, len(m.a)+len(m.b)) | |||
} | |||
// Return an upper bound on ratio() relatively quickly. | |||
// | |||
// This isn't defined beyond that it is an upper bound on .Ratio(), and | |||
// is faster to compute. | |||
func (m *SequenceMatcher) QuickRatio() float64 { | |||
// viewing a and b as multisets, set matches to the cardinality | |||
// of their intersection; this counts the number of matches | |||
// without regard to order, so is clearly an upper bound | |||
if m.fullBCount == nil { | |||
m.fullBCount = map[string]int{} | |||
for _, s := range m.b { | |||
m.fullBCount[s] = m.fullBCount[s] + 1 | |||
} | |||
} | |||
// avail[x] is the number of times x appears in 'b' less the | |||
// number of times we've seen it in 'a' so far ... kinda | |||
avail := map[string]int{} | |||
matches := 0 | |||
for _, s := range m.a { | |||
n, ok := avail[s] | |||
if !ok { | |||
n = m.fullBCount[s] | |||
} | |||
avail[s] = n - 1 | |||
if n > 0 { | |||
matches += 1 | |||
} | |||
} | |||
return calculateRatio(matches, len(m.a)+len(m.b)) | |||
} | |||
// Return an upper bound on ratio() very quickly. | |||
// | |||
// This isn't defined beyond that it is an upper bound on .Ratio(), and | |||
// is faster to compute than either .Ratio() or .QuickRatio(). | |||
func (m *SequenceMatcher) RealQuickRatio() float64 { | |||
la, lb := len(m.a), len(m.b) | |||
return calculateRatio(min(la, lb), la+lb) | |||
} | |||
// Convert range to the "ed" format | |||
func formatRangeUnified(start, stop int) string { | |||
// Per the diff spec at http://www.unix.org/single_unix_specification/ | |||
beginning := start + 1 // lines start numbering with one | |||
length := stop - start | |||
if length == 1 { | |||
return fmt.Sprintf("%d", beginning) | |||
} | |||
if length == 0 { | |||
beginning -= 1 // empty ranges begin at line just before the range | |||
} | |||
return fmt.Sprintf("%d,%d", beginning, length) | |||
} | |||
// Unified diff parameters | |||
type UnifiedDiff struct { | |||
A []string // First sequence lines | |||
FromFile string // First file name | |||
FromDate string // First file time | |||
B []string // Second sequence lines | |||
ToFile string // Second file name | |||
ToDate string // Second file time | |||
Eol string // Headers end of line, defaults to LF | |||
Context int // Number of context lines | |||
} | |||
// Compare two sequences of lines; generate the delta as a unified diff. | |||
// | |||
// Unified diffs are a compact way of showing line changes and a few | |||
// lines of context. The number of context lines is set by 'n' which | |||
// defaults to three. | |||
// | |||
// By default, the diff control lines (those with ---, +++, or @@) are | |||
// created with a trailing newline. This is helpful so that inputs | |||
// created from file.readlines() result in diffs that are suitable for | |||
// file.writelines() since both the inputs and outputs have trailing | |||
// newlines. | |||
// | |||
// For inputs that do not have trailing newlines, set the lineterm | |||
// argument to "" so that the output will be uniformly newline free. | |||
// | |||
// The unidiff format normally has a header for filenames and modification | |||
// times. Any or all of these may be specified using strings for | |||
// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'. | |||
// The modification times are normally expressed in the ISO 8601 format. | |||
func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error { | |||
buf := bufio.NewWriter(writer) | |||
defer buf.Flush() | |||
w := func(format string, args ...interface{}) error { | |||
_, err := buf.WriteString(fmt.Sprintf(format, args...)) | |||
return err | |||
} | |||
if len(diff.Eol) == 0 { | |||
diff.Eol = "\n" | |||
} | |||
started := false | |||
m := NewMatcher(diff.A, diff.B) | |||
for _, g := range m.GetGroupedOpCodes(diff.Context) { | |||
if !started { | |||
started = true | |||
fromDate := "" | |||
if len(diff.FromDate) > 0 { | |||
fromDate = "\t" + diff.FromDate | |||
} | |||
toDate := "" | |||
if len(diff.ToDate) > 0 { | |||
toDate = "\t" + diff.ToDate | |||
} | |||
err := w("--- %s%s%s", diff.FromFile, fromDate, diff.Eol) | |||
if err != nil { | |||
return err | |||
} | |||
err = w("+++ %s%s%s", diff.ToFile, toDate, diff.Eol) | |||
if err != nil { | |||
return err | |||
} | |||
} | |||
first, last := g[0], g[len(g)-1] | |||
range1 := formatRangeUnified(first.I1, last.I2) | |||
range2 := formatRangeUnified(first.J1, last.J2) | |||
if err := w("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil { | |||
return err | |||
} | |||
for _, c := range g { | |||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2 | |||
if c.Tag == 'e' { | |||
for _, line := range diff.A[i1:i2] { | |||
if err := w(" " + line); err != nil { | |||
return err | |||
} | |||
} | |||
continue | |||
} | |||
if c.Tag == 'r' || c.Tag == 'd' { | |||
for _, line := range diff.A[i1:i2] { | |||
if err := w("-" + line); err != nil { | |||
return err | |||
} | |||
} | |||
} | |||
if c.Tag == 'r' || c.Tag == 'i' { | |||
for _, line := range diff.B[j1:j2] { | |||
if err := w("+" + line); err != nil { | |||
return err | |||
} | |||
} | |||
} | |||
} | |||
} | |||
return nil | |||
} | |||
// Like WriteUnifiedDiff but returns the diff a string. | |||
func GetUnifiedDiffString(diff UnifiedDiff) (string, error) { | |||
w := &bytes.Buffer{} | |||
err := WriteUnifiedDiff(w, diff) | |||
return string(w.Bytes()), err | |||
} | |||
// Convert range to the "ed" format. | |||
func formatRangeContext(start, stop int) string { | |||
// Per the diff spec at http://www.unix.org/single_unix_specification/ | |||
beginning := start + 1 // lines start numbering with one | |||
length := stop - start | |||
if length == 0 { | |||
beginning -= 1 // empty ranges begin at line just before the range | |||
} | |||
if length <= 1 { | |||
return fmt.Sprintf("%d", beginning) | |||
} | |||
return fmt.Sprintf("%d,%d", beginning, beginning+length-1) | |||
} | |||
type ContextDiff UnifiedDiff | |||
// Compare two sequences of lines; generate the delta as a context diff. | |||
// | |||
// Context diffs are a compact way of showing line changes and a few | |||
// lines of context. The number of context lines is set by diff.Context | |||
// which defaults to three. | |||
// | |||
// By default, the diff control lines (those with *** or ---) are | |||
// created with a trailing newline. | |||
// | |||
// For inputs that do not have trailing newlines, set the diff.Eol | |||
// argument to "" so that the output will be uniformly newline free. | |||
// | |||
// The context diff format normally has a header for filenames and | |||
// modification times. Any or all of these may be specified using | |||
// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate. | |||
// The modification times are normally expressed in the ISO 8601 format. | |||
// If not specified, the strings default to blanks. | |||
func WriteContextDiff(writer io.Writer, diff ContextDiff) error { | |||
buf := bufio.NewWriter(writer) | |||
defer buf.Flush() | |||
var diffErr error | |||
w := func(format string, args ...interface{}) { | |||
_, err := buf.WriteString(fmt.Sprintf(format, args...)) | |||
if diffErr == nil && err != nil { | |||
diffErr = err | |||
} | |||
} | |||
if len(diff.Eol) == 0 { | |||
diff.Eol = "\n" | |||
} | |||
prefix := map[byte]string{ | |||
'i': "+ ", | |||
'd': "- ", | |||
'r': "! ", | |||
'e': " ", | |||
} | |||
started := false | |||
m := NewMatcher(diff.A, diff.B) | |||
for _, g := range m.GetGroupedOpCodes(diff.Context) { | |||
if !started { | |||
started = true | |||
fromDate := "" | |||
if len(diff.FromDate) > 0 { | |||
fromDate = "\t" + diff.FromDate | |||
} | |||
toDate := "" | |||
if len(diff.ToDate) > 0 { | |||
toDate = "\t" + diff.ToDate | |||
} | |||
w("*** %s%s%s", diff.FromFile, fromDate, diff.Eol) | |||
w("--- %s%s%s", diff.ToFile, toDate, diff.Eol) | |||
} | |||
first, last := g[0], g[len(g)-1] | |||
w("***************" + diff.Eol) | |||
range1 := formatRangeContext(first.I1, last.I2) | |||
w("*** %s ****%s", range1, diff.Eol) | |||
for _, c := range g { | |||
if c.Tag == 'r' || c.Tag == 'd' { | |||
for _, cc := range g { | |||
if cc.Tag == 'i' { | |||
continue | |||
} | |||
for _, line := range diff.A[cc.I1:cc.I2] { | |||
w(prefix[cc.Tag] + line) | |||
} | |||
} | |||
break | |||
} | |||
} | |||
range2 := formatRangeContext(first.J1, last.J2) | |||
w("--- %s ----%s", range2, diff.Eol) | |||
for _, c := range g { | |||
if c.Tag == 'r' || c.Tag == 'i' { | |||
for _, cc := range g { | |||
if cc.Tag == 'd' { | |||
continue | |||
} | |||
for _, line := range diff.B[cc.J1:cc.J2] { | |||
w(prefix[cc.Tag] + line) | |||
} | |||
} | |||
break | |||
} | |||
} | |||
} | |||
return diffErr | |||
} | |||
// Like WriteContextDiff but returns the diff a string. | |||
func GetContextDiffString(diff ContextDiff) (string, error) { | |||
w := &bytes.Buffer{} | |||
err := WriteContextDiff(w, diff) | |||
return string(w.Bytes()), err | |||
} | |||
// Split a string on "\n" while preserving them. The output can be used | |||
// as input for UnifiedDiff and ContextDiff structures. | |||
func SplitLines(s string) []string { | |||
lines := strings.SplitAfter(s, "\n") | |||
lines[len(lines)-1] += "\n" | |||
return lines | |||
} |
@@ -0,0 +1,22 @@ | |||
Copyright (c) 2012 - 2013 Mat Ryer and Tyler Bunnell | |||
Please consider promoting this project if you find it useful. | |||
Permission is hereby granted, free of charge, to any person | |||
obtaining a copy of this software and associated documentation | |||
files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, | |||
publish, distribute, sublicense, and/or sell copies of the Software, | |||
and to permit persons to whom the Software is furnished to do so, | |||
subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included | |||
in all copies or substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | |||
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT | |||
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE | |||
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
@@ -0,0 +1,346 @@ | |||
/* | |||
* CODE GENERATED AUTOMATICALLY WITH github.com/stretchr/testify/_codegen | |||
* THIS FILE MUST NOT BE EDITED BY HAND | |||
*/ | |||
package assert | |||
import ( | |||
http "net/http" | |||
url "net/url" | |||
time "time" | |||
) | |||
// Condition uses a Comparison to assert a complex condition. | |||
func (a *Assertions) Condition(comp Comparison, msgAndArgs ...interface{}) bool { | |||
return Condition(a.t, comp, msgAndArgs...) | |||
} | |||
// Contains asserts that the specified string, list(array, slice...) or map contains the | |||
// specified substring or element. | |||
// | |||
// a.Contains("Hello World", "World", "But 'Hello World' does contain 'World'") | |||
// a.Contains(["Hello", "World"], "World", "But ["Hello", "World"] does contain 'World'") | |||
// a.Contains({"Hello": "World"}, "Hello", "But {'Hello': 'World'} does contain 'Hello'") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) Contains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool { | |||
return Contains(a.t, s, contains, msgAndArgs...) | |||
} | |||
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either | |||
// a slice or a channel with len == 0. | |||
// | |||
// a.Empty(obj) | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) Empty(object interface{}, msgAndArgs ...interface{}) bool { | |||
return Empty(a.t, object, msgAndArgs...) | |||
} | |||
// Equal asserts that two objects are equal. | |||
// | |||
// a.Equal(123, 123, "123 and 123 should be equal") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) Equal(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool { | |||
return Equal(a.t, expected, actual, msgAndArgs...) | |||
} | |||
// EqualError asserts that a function returned an error (i.e. not `nil`) | |||
// and that it is equal to the provided error. | |||
// | |||
// actualObj, err := SomeFunction() | |||
// a.EqualError(err, expectedErrorString, "An error was expected") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) EqualError(theError error, errString string, msgAndArgs ...interface{}) bool { | |||
return EqualError(a.t, theError, errString, msgAndArgs...) | |||
} | |||
// EqualValues asserts that two objects are equal or convertable to the same types | |||
// and equal. | |||
// | |||
// a.EqualValues(uint32(123), int32(123), "123 and 123 should be equal") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) EqualValues(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool { | |||
return EqualValues(a.t, expected, actual, msgAndArgs...) | |||
} | |||
// Error asserts that a function returned an error (i.e. not `nil`). | |||
// | |||
// actualObj, err := SomeFunction() | |||
// if a.Error(err, "An error was expected") { | |||
// assert.Equal(t, err, expectedError) | |||
// } | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) Error(err error, msgAndArgs ...interface{}) bool { | |||
return Error(a.t, err, msgAndArgs...) | |||
} | |||
// Exactly asserts that two objects are equal is value and type. | |||
// | |||
// a.Exactly(int32(123), int64(123), "123 and 123 should NOT be equal") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) Exactly(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool { | |||
return Exactly(a.t, expected, actual, msgAndArgs...) | |||
} | |||
// Fail reports a failure through | |||
func (a *Assertions) Fail(failureMessage string, msgAndArgs ...interface{}) bool { | |||
return Fail(a.t, failureMessage, msgAndArgs...) | |||
} | |||
// FailNow fails test | |||
func (a *Assertions) FailNow(failureMessage string, msgAndArgs ...interface{}) bool { | |||
return FailNow(a.t, failureMessage, msgAndArgs...) | |||
} | |||
// False asserts that the specified value is false. | |||
// | |||
// a.False(myBool, "myBool should be false") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) False(value bool, msgAndArgs ...interface{}) bool { | |||
return False(a.t, value, msgAndArgs...) | |||
} | |||
// HTTPBodyContains asserts that a specified handler returns a | |||
// body that contains a string. | |||
// | |||
// a.HTTPBodyContains(myHandler, "www.google.com", nil, "I'm Feeling Lucky") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) HTTPBodyContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool { | |||
return HTTPBodyContains(a.t, handler, method, url, values, str) | |||
} | |||
// HTTPBodyNotContains asserts that a specified handler returns a | |||
// body that does not contain a string. | |||
// | |||
// a.HTTPBodyNotContains(myHandler, "www.google.com", nil, "I'm Feeling Lucky") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) HTTPBodyNotContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool { | |||
return HTTPBodyNotContains(a.t, handler, method, url, values, str) | |||
} | |||
// HTTPError asserts that a specified handler returns an error status code. | |||
// | |||
// a.HTTPError(myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}} | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) HTTPError(handler http.HandlerFunc, method string, url string, values url.Values) bool { | |||
return HTTPError(a.t, handler, method, url, values) | |||
} | |||
// HTTPRedirect asserts that a specified handler returns a redirect status code. | |||
// | |||
// a.HTTPRedirect(myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}} | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) HTTPRedirect(handler http.HandlerFunc, method string, url string, values url.Values) bool { | |||
return HTTPRedirect(a.t, handler, method, url, values) | |||
} | |||
// HTTPSuccess asserts that a specified handler returns a success status code. | |||
// | |||
// a.HTTPSuccess(myHandler, "POST", "http://www.google.com", nil) | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) HTTPSuccess(handler http.HandlerFunc, method string, url string, values url.Values) bool { | |||
return HTTPSuccess(a.t, handler, method, url, values) | |||
} | |||
// Implements asserts that an object is implemented by the specified interface. | |||
// | |||
// a.Implements((*MyInterface)(nil), new(MyObject), "MyObject") | |||
func (a *Assertions) Implements(interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool { | |||
return Implements(a.t, interfaceObject, object, msgAndArgs...) | |||
} | |||
// InDelta asserts that the two numerals are within delta of each other. | |||
// | |||
// a.InDelta(math.Pi, (22 / 7.0), 0.01) | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) InDelta(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool { | |||
return InDelta(a.t, expected, actual, delta, msgAndArgs...) | |||
} | |||
// InDeltaSlice is the same as InDelta, except it compares two slices. | |||
func (a *Assertions) InDeltaSlice(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool { | |||
return InDeltaSlice(a.t, expected, actual, delta, msgAndArgs...) | |||
} | |||
// InEpsilon asserts that expected and actual have a relative error less than epsilon | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) InEpsilon(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool { | |||
return InEpsilon(a.t, expected, actual, epsilon, msgAndArgs...) | |||
} | |||
// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices. | |||
func (a *Assertions) InEpsilonSlice(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool { | |||
return InEpsilonSlice(a.t, expected, actual, epsilon, msgAndArgs...) | |||
} | |||
// IsType asserts that the specified objects are of the same type. | |||
func (a *Assertions) IsType(expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool { | |||
return IsType(a.t, expectedType, object, msgAndArgs...) | |||
} | |||
// JSONEq asserts that two JSON strings are equivalent. | |||
// | |||
// a.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`) | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) JSONEq(expected string, actual string, msgAndArgs ...interface{}) bool { | |||
return JSONEq(a.t, expected, actual, msgAndArgs...) | |||
} | |||
// Len asserts that the specified object has specific length. | |||
// Len also fails if the object has a type that len() not accept. | |||
// | |||
// a.Len(mySlice, 3, "The size of slice is not 3") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) Len(object interface{}, length int, msgAndArgs ...interface{}) bool { | |||
return Len(a.t, object, length, msgAndArgs...) | |||
} | |||
// Nil asserts that the specified object is nil. | |||
// | |||
// a.Nil(err, "err should be nothing") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) Nil(object interface{}, msgAndArgs ...interface{}) bool { | |||
return Nil(a.t, object, msgAndArgs...) | |||
} | |||
// NoError asserts that a function returned no error (i.e. `nil`). | |||
// | |||
// actualObj, err := SomeFunction() | |||
// if a.NoError(err) { | |||
// assert.Equal(t, actualObj, expectedObj) | |||
// } | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) NoError(err error, msgAndArgs ...interface{}) bool { | |||
return NoError(a.t, err, msgAndArgs...) | |||
} | |||
// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the | |||
// specified substring or element. | |||
// | |||
// a.NotContains("Hello World", "Earth", "But 'Hello World' does NOT contain 'Earth'") | |||
// a.NotContains(["Hello", "World"], "Earth", "But ['Hello', 'World'] does NOT contain 'Earth'") | |||
// a.NotContains({"Hello": "World"}, "Earth", "But {'Hello': 'World'} does NOT contain 'Earth'") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) NotContains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool { | |||
return NotContains(a.t, s, contains, msgAndArgs...) | |||
} | |||
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either | |||
// a slice or a channel with len == 0. | |||
// | |||
// if a.NotEmpty(obj) { | |||
// assert.Equal(t, "two", obj[1]) | |||
// } | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) NotEmpty(object interface{}, msgAndArgs ...interface{}) bool { | |||
return NotEmpty(a.t, object, msgAndArgs...) | |||
} | |||
// NotEqual asserts that the specified values are NOT equal. | |||
// | |||
// a.NotEqual(obj1, obj2, "two objects shouldn't be equal") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) NotEqual(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool { | |||
return NotEqual(a.t, expected, actual, msgAndArgs...) | |||
} | |||
// NotNil asserts that the specified object is not nil. | |||
// | |||
// a.NotNil(err, "err should be something") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) NotNil(object interface{}, msgAndArgs ...interface{}) bool { | |||
return NotNil(a.t, object, msgAndArgs...) | |||
} | |||
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic. | |||
// | |||
// a.NotPanics(func(){ | |||
// RemainCalm() | |||
// }, "Calling RemainCalm() should NOT panic") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) NotPanics(f PanicTestFunc, msgAndArgs ...interface{}) bool { | |||
return NotPanics(a.t, f, msgAndArgs...) | |||
} | |||
// NotRegexp asserts that a specified regexp does not match a string. | |||
// | |||
// a.NotRegexp(regexp.MustCompile("starts"), "it's starting") | |||
// a.NotRegexp("^start", "it's not starting") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) NotRegexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool { | |||
return NotRegexp(a.t, rx, str, msgAndArgs...) | |||
} | |||
// NotZero asserts that i is not the zero value for its type and returns the truth. | |||
func (a *Assertions) NotZero(i interface{}, msgAndArgs ...interface{}) bool { | |||
return NotZero(a.t, i, msgAndArgs...) | |||
} | |||
// Panics asserts that the code inside the specified PanicTestFunc panics. | |||
// | |||
// a.Panics(func(){ | |||
// GoCrazy() | |||
// }, "Calling GoCrazy() should panic") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) Panics(f PanicTestFunc, msgAndArgs ...interface{}) bool { | |||
return Panics(a.t, f, msgAndArgs...) | |||
} | |||
// Regexp asserts that a specified regexp matches a string. | |||
// | |||
// a.Regexp(regexp.MustCompile("start"), "it's starting") | |||
// a.Regexp("start...$", "it's not starting") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) Regexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool { | |||
return Regexp(a.t, rx, str, msgAndArgs...) | |||
} | |||
// True asserts that the specified value is true. | |||
// | |||
// a.True(myBool, "myBool should be true") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) True(value bool, msgAndArgs ...interface{}) bool { | |||
return True(a.t, value, msgAndArgs...) | |||
} | |||
// WithinDuration asserts that the two times are within duration delta of each other. | |||
// | |||
// a.WithinDuration(time.Now(), time.Now(), 10*time.Second, "The difference should not be more than 10s") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func (a *Assertions) WithinDuration(expected time.Time, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool { | |||
return WithinDuration(a.t, expected, actual, delta, msgAndArgs...) | |||
} | |||
// Zero asserts that i is the zero value for its type and returns the truth. | |||
func (a *Assertions) Zero(i interface{}, msgAndArgs ...interface{}) bool { | |||
return Zero(a.t, i, msgAndArgs...) | |||
} |
@@ -0,0 +1,4 @@ | |||
{{.CommentWithoutT "a"}} | |||
func (a *Assertions) {{.DocInfo.Name}}({{.Params}}) bool { | |||
return {{.DocInfo.Name}}(a.t, {{.ForwardedParams}}) | |||
} |
@@ -0,0 +1,45 @@ | |||
// Package assert provides a set of comprehensive testing tools for use with the normal Go testing system. | |||
// | |||
// Example Usage | |||
// | |||
// The following is a complete example using assert in a standard test function: | |||
// import ( | |||
// "testing" | |||
// "github.com/stretchr/testify/assert" | |||
// ) | |||
// | |||
// func TestSomething(t *testing.T) { | |||
// | |||
// var a string = "Hello" | |||
// var b string = "Hello" | |||
// | |||
// assert.Equal(t, a, b, "The two words should be the same.") | |||
// | |||
// } | |||
// | |||
// if you assert many times, use the format below: | |||
// | |||
// import ( | |||
// "testing" | |||
// "github.com/stretchr/testify/assert" | |||
// ) | |||
// | |||
// func TestSomething(t *testing.T) { | |||
// assert := assert.New(t) | |||
// | |||
// var a string = "Hello" | |||
// var b string = "Hello" | |||
// | |||
// assert.Equal(a, b, "The two words should be the same.") | |||
// } | |||
// | |||
// Assertions | |||
// | |||
// Assertions allow you to easily write test code, and are global funcs in the `assert` package. | |||
// All assertion functions take, as the first argument, the `*testing.T` object provided by the | |||
// testing framework. This allows the assertion funcs to write the failings and other details to | |||
// the correct place. | |||
// | |||
// Every assertion function also takes an optional string message as the final argument, | |||
// allowing custom error messages to be appended to the message the assertion method outputs. | |||
package assert |
@@ -0,0 +1,10 @@ | |||
package assert | |||
import ( | |||
"errors" | |||
) | |||
// AnError is an error instance useful for testing. If the code does not care | |||
// about error specifics, and only needs to return the error for example, this | |||
// error should be used to make the test code more readable. | |||
var AnError = errors.New("assert.AnError general error for testing") |
@@ -0,0 +1,16 @@ | |||
package assert | |||
// Assertions provides assertion methods around the | |||
// TestingT interface. | |||
type Assertions struct { | |||
t TestingT | |||
} | |||
// New makes a new Assertions object for the specified TestingT. | |||
func New(t TestingT) *Assertions { | |||
return &Assertions{ | |||
t: t, | |||
} | |||
} | |||
//go:generate go run ../_codegen/main.go -output-package=assert -template=assertion_forward.go.tmpl |
@@ -0,0 +1,106 @@ | |||
package assert | |||
import ( | |||
"fmt" | |||
"net/http" | |||
"net/http/httptest" | |||
"net/url" | |||
"strings" | |||
) | |||
// httpCode is a helper that returns HTTP code of the response. It returns -1 | |||
// if building a new request fails. | |||
func httpCode(handler http.HandlerFunc, method, url string, values url.Values) int { | |||
w := httptest.NewRecorder() | |||
req, err := http.NewRequest(method, url+"?"+values.Encode(), nil) | |||
if err != nil { | |||
return -1 | |||
} | |||
handler(w, req) | |||
return w.Code | |||
} | |||
// HTTPSuccess asserts that a specified handler returns a success status code. | |||
// | |||
// assert.HTTPSuccess(t, myHandler, "POST", "http://www.google.com", nil) | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func HTTPSuccess(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool { | |||
code := httpCode(handler, method, url, values) | |||
if code == -1 { | |||
return false | |||
} | |||
return code >= http.StatusOK && code <= http.StatusPartialContent | |||
} | |||
// HTTPRedirect asserts that a specified handler returns a redirect status code. | |||
// | |||
// assert.HTTPRedirect(t, myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}} | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func HTTPRedirect(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool { | |||
code := httpCode(handler, method, url, values) | |||
if code == -1 { | |||
return false | |||
} | |||
return code >= http.StatusMultipleChoices && code <= http.StatusTemporaryRedirect | |||
} | |||
// HTTPError asserts that a specified handler returns an error status code. | |||
// | |||
// assert.HTTPError(t, myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}} | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func HTTPError(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool { | |||
code := httpCode(handler, method, url, values) | |||
if code == -1 { | |||
return false | |||
} | |||
return code >= http.StatusBadRequest | |||
} | |||
// HTTPBody is a helper that returns HTTP body of the response. It returns | |||
// empty string if building a new request fails. | |||
func HTTPBody(handler http.HandlerFunc, method, url string, values url.Values) string { | |||
w := httptest.NewRecorder() | |||
req, err := http.NewRequest(method, url+"?"+values.Encode(), nil) | |||
if err != nil { | |||
return "" | |||
} | |||
handler(w, req) | |||
return w.Body.String() | |||
} | |||
// HTTPBodyContains asserts that a specified handler returns a | |||
// body that contains a string. | |||
// | |||
// assert.HTTPBodyContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func HTTPBodyContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool { | |||
body := HTTPBody(handler, method, url, values) | |||
contains := strings.Contains(body, fmt.Sprint(str)) | |||
if !contains { | |||
Fail(t, fmt.Sprintf("Expected response body for \"%s\" to contain \"%s\" but found \"%s\"", url+"?"+values.Encode(), str, body)) | |||
} | |||
return contains | |||
} | |||
// HTTPBodyNotContains asserts that a specified handler returns a | |||
// body that does not contain a string. | |||
// | |||
// assert.HTTPBodyNotContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky") | |||
// | |||
// Returns whether the assertion was successful (true) or not (false). | |||
func HTTPBodyNotContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool { | |||
body := HTTPBody(handler, method, url, values) | |||
contains := strings.Contains(body, fmt.Sprint(str)) | |||
if contains { | |||
Fail(t, fmt.Sprintf("Expected response body for \"%s\" to NOT contain \"%s\" but found \"%s\"", url+"?"+values.Encode(), str, body)) | |||
} | |||
return !contains | |||
} |
@@ -51,6 +51,12 @@ | |||
"revisionTime": "2016-11-07T15:06:50Z" | |||
}, | |||
{ | |||
"checksumSHA1": "Lf3uUXTkKK5DJ37BxQvxO1Fq+K8=", | |||
"path": "github.com/davecgh/go-spew/spew", | |||
"revision": "976c720a22c8eb4eb6a0b4348ad85ad12491a506", | |||
"revisionTime": "2016-09-25T22:06:09Z" | |||
}, | |||
{ | |||
"checksumSHA1": "qM/kf31cT2cxjtHxdzbu8q8jPq0=", | |||
"path": "github.com/go-macaron/binding", | |||
"revision": "9440f336b443056c90d7d448a0a55ad8c7599880", | |||
@@ -249,6 +255,12 @@ | |||
"revisionTime": "2016-07-24T20:39:20Z" | |||
}, | |||
{ | |||
"checksumSHA1": "zKKp5SZ3d3ycKe4EKMNT0BqAWBw=", | |||
"path": "github.com/pmezard/go-difflib/difflib", | |||
"revision": "976c720a22c8eb4eb6a0b4348ad85ad12491a506", | |||
"revisionTime": "2016-09-25T22:06:09Z" | |||
}, | |||
{ | |||
"checksumSHA1": "c7jHQZk5ZEsFR9EXsWJXkszPBZA=", | |||
"path": "github.com/russross/blackfriday", | |||
"revision": "5f33e7b7878355cd2b7e6b8eefc48a5472c69f70", | |||
@@ -309,6 +321,12 @@ | |||
"revisionTime": "2016-11-03T17:15:00Z" | |||
}, | |||
{ | |||
"checksumSHA1": "Q2V7Zs3diLmLfmfbiuLpSxETSuY=", | |||
"path": "github.com/stretchr/testify/assert", | |||
"revision": "976c720a22c8eb4eb6a0b4348ad85ad12491a506", | |||
"revisionTime": "2016-09-25T22:06:09Z" | |||
}, | |||
{ | |||
"checksumSHA1": "ToTZYDqlvtuFsetAq5FeCwUxp0E=", | |||
"path": "github.com/urfave/cli", | |||
"revision": "d86a009f5e13f83df65d0d6cee9a2e3f1445f0da", | |||