|
- <span>
- <i class="question circle icon indicators_descr" style="cursor:pointer;"></i>
- <div class="ui flowing popup bottom left transition hidden" style="inset: 564px auto auto 1px; width: 920px">
- <table class="ui celled table">
- <thead>
- <tr>
- <th style="width:80px;">指标</th>
- <th>说明</th>
- </tr>
- </thead>
- <tbody>
- <tr>
- <td data-label="指标">ACC</td>
- <td data-label="说明" indicator="ACC">Accuracy:精确度,计算模型预测准确率,该指标越高,说明评测结果越好。</td>
- </tr>
- <!-- <tr>
- <td data-label="指标">CAV</td>
- <td data-label="说明" indicator="CAV">Classification Accuracy Variance:用于评估深度学习模型性能的最重要指标为准确性。该指标值越高,说明评测结果越好。</td>
- </tr> -->
- <tr>
- <td data-label="指标">ASS</td>
- <td data-label="说明" indicator="ASS">Average Structural Similarity:所有攻击成功对抗样本与其原始样本间的平均相似性。该指标越大,说明评测结果越好。</td>
- </tr>
- <tr>
- <td data-label="指标">ALDp</td>
- <td data-label="说明" indicator="ALDp">Average LpDistortion:为所有攻击成功的对抗样本的平均归一化Lp失真度,ALDp值越小,对抗样本的不可感知性越强。</td>
- </tr>
-
- <tr>
- <td data-label="指标">ACAC</td>
- <td data-label="说明" indicator="ACAC">Average Confidence of Adversarial Class(ACAC):这个数值越高,攻击算法的攻击能力越强。</td>
- </tr>
- <!-- <tr>
- <td data-label="指标">ACTC</td>
- <td data-label="说明" indicator="ACTC">Average Confidence of True Class(ACTC):这个数值越低,攻击算法的攻击能力越强。</td>
- </tr> -->
- <tr>
- <td data-label="指标">PSD</td>
- <td data-label="说明" indicator="PSD">Perturbation Sensitivity Distance:用于评测人类对扰动的感知能力。该指标值越大,说明评测结果越差。</td>
- </tr>
- <tr>
- <td data-label="指标">CACC</td>
- <td data-label="说明" indicator="CACC">Clean ACC:该值计算的是原始未被攻击的样本,使用模型和groundtruth相比较的模型的本身的一个。</td>
- </tr>
- </tbody>
- </table>
- </div>
- </span>
- <script>
- ;(function() {
- setTimeout(function(){
- $('.indicators_descr').popup({
- inline: true,
- hoverable: true,
- position: 'top center',
- delay: {
- show: 300,
- hide: 800
- }
- });
- }, 1000);
- })();
- </script>
|